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Three-Dimensional Nanostructures for Photonics
By Georg von Freymann,* Alexandra Ledermann, Michael Thiel,

Isabelle Staude, Sabine Essig, Kurt Busch, and Martin Wegener
Recent progress in direct laser writing of three-dimensional (3D) polymer

nanostructures for photonics is reviewed. This technology has reached a level

of maturity at which it can be considered as the 3D analogue of planar

electron-beam lithography. Combined with atomic-layer deposition and/or

chemical-vapor deposition of dielectrics—the 3D analogues of planar

evaporation technologies, the 3D polymer templates can be converted or

inverted into 3D high-refractive-index-contrast nanostructures. Examples

discussed in this review include positive and inverse 3D silicon-based

woodpile photonic crystals possessing complete photonic bandgaps, novel

optical resonator designs within these structures, 3D chiral photonic crystals

otonic

quasicrystals. The latter represent a particularly complex 3D nanostructure.
1. Introduction
for polarization-state manipulation, and 3D icosahedral ph
Throughout the last decades, the field of optics and photonics has
seen tremendous progress in such diverse areas as optical
waveguide architectures, photovoltaic energy conversion, solid-
state lighting devices, lasers, and optical sensors. All of these rely
on the availability of planar, i.e., 2D lithography technologies that
are borrowed from electronics. However, electronics technology is
already rapidly developing towards multifunctional-layer systems
and the next logical step is going to truly 3D architectures.
Regarding optics and photonics, such 3D lithography technology
has emerged over recent years in the formof direct laserwriting—
the 3D counterpart of 2D electron-beam lithography—and
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subsequent coating or infilling techniques
that are the counterpart of 2D evaporation
techniques. These experimental develop-
ments are complemented by theoretical
developments as architectures for photonic
circuitry in three dimensions, e.g., based on
3D complete photonic-bandgap structures,
have also become available over recent
years. Furthermore, certain functionalities,
such as chirality, even necessarily require
3Dphotonic structures.Other examples are
3D photonic quasicrystals that not only
appeal by their aesthetics andmathematical
beauty, but also allow the study of funda-
mental aspects of wave propagation in
structures that are neither strictly periodic
nor completely random. With the present
review, we intend to convey a flavor for some of these rapid
developments towards truly 3D nanostructures for photonics.
2. Fabrication of 3D Photonic Nanostructures

In the last twenty years, several techniques for the fabrication of 3D
photonic nanostructures have been developed (see, e.g., recent
review articles[1–3]). These techniques can be divided into two
groups: techniques realizing large-area structures in a parallel
fashion and serial techniques providing greater designflexibility at
the cost of reduced fabrication speed. Colloidal self-assembly,[4]

holographic laser lithography,[5] and phase-mask holography[6,7]

belong to the first group. Self-assembly of colloidal particles (e.g.,
silica or polystyrene spheres) leads to well ordered 3D structures,
the optical properties of which are mainly controlled via the size
and the shape of the particles. Aprominent example is the artificial
opal, oneof the ‘‘workhorses’’ in thefieldof photonic crystals.After
inversion with high-dielectric-contrast materials such as silicon,
even a complete photonic bandgap opens up and the first complete
photonic bandgap at near-IR frequencies has been demonstrated
along these lines about ten years ago.[8] While high-quality bulk
samples can be fabricated via this approach, a fundamental
limitation is the inherent difficulty to introduce well-defined
functional defects.[2,9] This problem is usually overcome by
combining colloidal self-assembly with a serial lithographic
technique.[10,11] While colloidal self-assembly is normally limited
to face-centered-cubic structures, holographic laser lithography
and phase-mask holography allow for a greater variety of
structures.[12,13] Here, the idea is to create 3D interference
patterns, which are used to expose a photosensitivematerial. After
development, a 3D structure remains. The main theoretical
Adv. Funct. Mater. 2010, 20, 1038–1052
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difficulty is to choose the right set of parameters for the different
beams,[14,15] especially, if a complete photonic bandgap shall
eventually be achieved. These parameters can be controlled via the
amplitudes and polarizations of the individual beams and the
angles between the different beams that are used to create the
interference pattern. For holographic laser lithography, this can be
directly experimentally implemented. However, these experi-
ments are challenging and not all combinations of parameters are
experimentally accessible,[16] although some progress has been
recently reported.[17,18] In the case of phase-mask holography, a
2- or 3D mask creates the required beams with desired properties
out of a single laser beam.[7,19] Here, the main difficulty lies in
calculating the proper phase-mask design and in its fabrication.
Despite the greater variety of structures accessible with holo-
graphic techniques, they do share some of the drawbacks of the
Adv. Funct. Mater. 2010, 20, 1038–1052 � 2010 WILEY-VCH Verl
colloidal self-assembly methods: Most of the structures are
fabricated in low-dielectric contrast materials and, hence, do not
possess a complete photonic bandgap.While this can, in principle,
be overcome via coating and/or infilling techniques (see below),
the introduction of functional defects is again inherently difficult.
Only very few theoretical designs exist for functional defects inside
these holographically created structures[20] and experimental
results for structures with a complete photonic bandgap are, to the
best of our knowledge, absent to date.

For some of these holographically created bulk structures, it is
known that they open a complete photonic bandgap if they are
infiltrated by or replicated into high-dielectric-contrast materi-
als.[14,15] As most of the polymeric photoresists do not withstand
the conditions required for the deposition of high-dielectric-
contrast semiconductors, several groups devised procedures to
ag GmbH & Co. KGaA, Weinheim 1039
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invert[21,22] or double-invert[23] the polymeric templates. Although
there are some papers published reporting successful infiltration
of holographically fabricated samples with high-dielectric-con-
stant materials,[7,25] none of them demonstrated a full photonic
bandgap to the best of our knowledge. This is most likely due to
some inherent topological problems hampering a complete
infiltration in gas-phase-based techniques.[26,27] In total, there
are extremely few papers demonstrating the successful inclusion
of functional defects (i.e., defects in a complete photonic bandgap)
in structures fabricated with one of these parallel techniques.[11]

The second group of techniques comprises direct-semicon-
ductor or layer-by-layer fabrication[28–32] and direct writing
techniques like direct ink writing[33] and direct laser writing.[34,35]

Photonic crystals of extremely high quality have been fabricated
using a layer-by-layer approach: semiconductor wafers are two-
dimensionally structured with e-beam lithography to yield one
layer of the desired structure. Several layers are then stacked on top
of each other using micromanipulation techniques[32] or they are
optically aligned and subsequently connected via wafer fusion
layer-by-layer.[30] As the 2D structure of each layer is defined via
electron-beam lithography, functional defects such as waveguides
or resonators can easily be designed and included into the
structure. Even defect layers containing optically active material
could be demonstrated along these lines.[36] However, although in
principle any structure could be fabricated in a layer-by-layer
fashion if only the layers are thin enough, experimental limitations
have so far restricted the use of this technique to the woodpile
photonic crystal, Ref. 31 being the exception. Since several
technologically challenging steps have to be combined here, the
fabrication of samples along these lines is both extremely
expensive and very time consuming. The main advantage of this
technique is the direct fabrication into high-dielectric-contrast
materials. The direct writing techniques sacrifice this advantage
for increased fabrication speed and improved structural design
freedom.

Direct ink writing fabricates structures by pressing an ink
through a nozzle with a cross-section directly defining the cross-
section of the smallest possible building block. For example,
quadratic cross-sections are preferably used for the fabrication of
woodpilephotonic crystals.The inkdirectly solidifiesonexiting the
nozzle and, hence, allows for the fabrication of almost arbitrary 3D
structures.[33] Nevertheless, the structures cannot be of high
complexity as the nozzle has to be able to reach all positions.
Crossing already written parts of the structure is impossible. This
limitation is absent for direct laserwriting.[37–39]Here, pulses from
anultrafast laser are focused into a photosensitivematerial in such
a way that the intensity reached in the very focal volume is
sufficiently high to polymerize the material via two- or multi-
photon absorption although thematerial is completely transparent
for the fundamental wavelength of the laser. In principle, almost
arbitrarily small features can begenerated along these lines. In real
world applications two limiting factors appear: i) the laser sources
are not perfectly stable, hence, working directly at the two-photon-
absorption threshold is almost impossible, and ii) common
photoresist materials do not possess an ideally sharp threshold
and, furthermore, do not allow for resolution better than the
average size of the building blocks. Local inhomogeneities of the
monomer/photoinitiator mixture further reduce the achievable
resolution, which, however, lies on the order of 80 nm for state-of-
� 2010 WILEY-VCH Verlag GmbH & C
the-art systems. Scanning the sample relative to the focus allows
for the fabrication of arbitrarily complex structures. Evenmultiple
crossings of alreadywritten structures pose no challenge, provided
that a photoresist is used, which does not significantly change its
index of refraction during writing. For instance, the commercially
available negative-tone photoresist SU-8 fulfills the above
requirements. Subsequently, the written structures are developed.
Several groups worldwide have established their own direct laser
writing setup.[34] To the best of our knowledge, the greatest variety
of different 3D photonic crystal structures has been fabricated
using this technique: woodpile,[40] slanted-pore,[41] square-[42] and
round-spiral photonic crystals[43]—with and without functional
defects, chiral photonic crystals,[44,45] and photonic quasicrys-
tals.[46] Most of the photosensitivematerials that can be structured
with direct laser writing do not possess sufficiently high dielectric
contrast to realize a complete photonic bandgap. Some of us have
recently introduced a photoresist system based on the chalcogen-
ide glass arsenic-trisulfide (As2S3) and a specially developed
etchant. This photoresist system overcomes the low dielectric
contrast[47,48] and also allows for the spatially selective inclusion of
optical active material via doping with erbium.[49] However, most
of the times the polymeric photoresist structures are used as
templates for the inversion or double-inversion into high-
dielectric-contrast materials such as semiconductors[2,21–26] or
metals.[50,51] Hence, structures fabricated using direct laser
writing are at the focus of this article, demonstrating very
interesting avenues for functionality besides the original schemes
relying on complete photonic bandgaps. High-dielectric-contrast
structures can boost the observed effects, but they are not
mandatory.
3. Functional Defects in 3D Photonic Crystals

Functional defects in 3D photonic crystals—in contrast to 2D
structures—potentially allow for the integration of functional
elements in several layers of the photonic crystal and, hence, for
dense 3D optical circuitry. Theoretical blueprints for such dense
integration of certain functional optical elements in three
dimensions exist for some years now. Most of these designs are
based on the woodpile photonic crystals, although some designs
havebeenproposed for inverseopal andsquare spiral structures[52]

as well. Here, we want to demonstrate that an approach based on
direct laser writing (DLW) and templating is suitable for the
fabrication of these structures. First of all, it is of crucial
importance to check whether the quality of the fabricated
templates is sufficient to guarantee the existence of a complete
photonic bandgap after conversion into a high-dielectric-contrast
structure. In this light, it is well known that polymer templates
shrink during the development process and several counter
measures have been devised.[40,53,54] Thus, we start by reviewing
the optical properties of the (face-centered-cubic) woodpile
photonic crystal template. Templates are fabricated using DLW
(for details, see Experimental section) in the negative-tone
photoresist SU-8 with the following parameters: rod distance
a¼ 1.0mm, 24 layers, footprint 100mm� 100mm. The templates
are surrounded by amassive rectangular wall to reduce the effects
of strain due to photoresist shrinkage.[40,55] After development,
angle-resolved transmittancemeasurements are performed using
o. KGaA, Weinheim Adv. Funct. Mater. 2010, 20, 1038–1052
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Figure 1. Angular resolved transmittance spectra of a woodpile photonic

crystal. a) Experimental data and b) numerical calculation. Reproduced

with permission from [55]. Copyright 2005 American Institute of Physics.
a home-built white-light microspectrometer setup.[55] Figure 1a
depicts the experimental data. The most prominent feature is the
fundamental stopband, located around1.65mmwavelength under
normal incidence. This stopband shifts slightly to the red for
oblique incidence. Starting at wavelengths around 1.1mm and
below, the clear signature of higher photonic bands is visible, a very
good indicator of high sample quality. How close are these
templates to ideal structures? To address this question, we
calculate the expected optical properties with a home-made
scattering-matrix code (for details, see Theoretical section). As
input parameters we take the structural data obtained from the
template via scanning electron microscopy (SEM) images from
top-view images and from focused-ion-beam (FIB) cross-sections.
Furthermore, the ellipsoidal shape of the voxels is taken into
account. SU-8 photoresist has a real refractive index of n¼ 1.57, its
surface roughness is neglected. Calculated transmittance data are
referenced identical to the experimental procedure, i.e., to the
Adv. Funct. Mater. 2010, 20, 1038–1052 � 2010 WILEY-VCH Verl
transmittance of the bare glass substrate. Along these lines all
adjustable parameters have been fixed and detailed, and
quantitative comparisons become available. The calculated
angle-resolved transmittance of this ideal structure is depicted
in Figure 1b. The qualitative agreement with the experiment is
excellent. The position, as well as the angular dispersion of the
fundamental stopband, is nicely reproduced; the higher bands
start at the samewavelength and the Fabry–Pérot fringes due to the
finite thickness of the sample are also reproduced. The overall
seemingly higher spectral resolution of the ideal structure,
especially in the region of the higher bands, is due to the perfect
normal incidence in the numerical calculations. In the experi-
ment, data are averaged over the 58 half-opening angle; hence,
sharp spectral features tend to smear out.

After silicon-double (single) inversion, a complete photonic
bandgap of 8%[26] (12%[25]) gap-to-midgap ratio opens up—
sufficiently large for the inclusion of functional defects.

One straightforward approach to include functional defects is to
combine the design rules worked out for 2D photonic crystals with
the advantage of a complete photonic bandgap so as to prevent
losses into the third dimension. This has led to so-called 3D–2D–
3D photonic crystal heterostructures[52,56–58] in which a 2D
photonic crystal layer (comprising waveguides etc.) is clad by 3D
photonic bandgap materials from above and below (for an
illustration, see Fig. 2). In principle, losses into the third
dimension are eliminated for frequencies inside the 3D photonic
bandgap of the cladding material. Furthermore, the vast knowl-
edge onproper circuitry design in 2Dphotonic crystals candirectly
be transferred to this case. This concept presents its full power, if
not only one, but several functional layers can be densely packed
and interconnected in the third dimension.[59] What kind of
changes to the optical properties of the bulk material do we expect
by the inclusion of a 2D defect layer? Here, we review our
experimental approach[61] to address this question with two
different sets of samples. First, we add the 2D photonic crystal on
top of the bulk woodpile photonic crystal (see Fig. 2a), so that
inspection with an electron scanning microscope is possible.
Second,we realize the full photonic crystal heterostructure, i.e., the
2D photonic crystals is clad between twowoodpiles. This structure
is then optically characterized, again with angle-resolved trans-
mittance spectroscopy.

Figure 2b–d show SEM images of the 3D–2D heterostructure.
The bottom 3D photonic crystal is a woodpile with rod
spacing a¼ 1mm, lattice constant c¼ 21/2a, 16 layers, and a
80mm� 80mm area. The height of the 2D photonic crystal is
150 nm. The posts of the 2D photonic crystal are precisely
positioned on top of the intersections of the rods of the underlying
woodpile photonic crystal. The two close-ups in Figure 2b
demonstrate the precise positioning and the highly reproducible
shape of the posts. Functional defects are introduced by omitting
one or several rows of these posts. This is demonstrated in
Figure 2c, aswell as in Figure 2d,where a 908 anglewas introduced
into the waveguide. Note that omitting one row of posts does not
lead to any sample deformation in the vicinity of the defect. The
waveguide architectures shownhere are not optimized or optically
functional, but rather aim at a proof-of-principle. The total writing
time for the structure shown in Figure 2 is about 20min.

The optical properties of this 3D–2D–3D heterostructure are
depicted in Figure 3. First of all, it is clear that for incidence of light
ag GmbH & Co. KGaA, Weinheim 1041



F
E
A
T
U
R
E
A
R
T
IC

L
E

www.afm-journal.de
www.MaterialsViews.com

Figure 3. Angular resolved transmittance spectra of a 3D–2D–3D photo-

nic crystal heterostructure. a) Experimental data and b) numerical calcu-

lation. The dotted ellipses are guides for the eyes to highlight the additional

transmittance mode. Compare with Fig. 1. Reproduced with permission

from [60]. Copyright 2006 Optical Society of America.

Figure 2. 3D–2D–3D photonic crystal heterostructure: a) schematic of the

sample and b) top view SEM image. The two insets are a magnified top-

view and an oblique incidence view. c,d) Oblique incidence view on a

waveguide without and with 908 bend. Reproduced with permission from

[60]. Copyright 2006 Optical Society of America.

1042
normal to the 2D plane, the overall structure forms just a Fabry–
Pérot cavity. Therefore, wewould expect for a proper design to find
a transmission mode located in the center of the fundamental
stopband. Figure 3a shows angle-resolved experimental transmit-
tance data. The overall optical properties are qualitatively the same
as found for thewoodpile photonic crystal (compare, e.g., the angle
dispersionof the fundamental stopband, thehigher bands, and the
Fabry–Pérot fringes). Due to a slightly higher filling fraction, the
spectra are red-shifted compared to the bulk structure. In addition,
we find one new mode located inside the fundamental stopband
(see thedotted ellipse), that results from the 2Dphotonic crystal. In
Figure 3b the comparison to an ideal structure is shown. The
calculations are exactly the same as described above, but we
additionally average over several angles of incidence, mimicking
� 2010 WILEY-VCH Verlag GmbH & C
the finite opening angle of the experiment. Now, as expected, all
sharp spectral features are smeared out, especially in the higher
bands, resulting in almost quantitative agreement between
experiment and calculation. Location and dispersion of the
defect mode are also close to the experimentally measured ones.
Therefore, the quality of these DLW fabricated templates
would again be sufficient for transferring the structures into
silicon.

The 3D–2D–3D photonic crystal heterostructures are one
access route to denser integration. Why not design circuitry
directly for 3D materials without the detour via 2D structures? In
2D photonic crystals simple resonators are created by altering just
one elementary cell of the periodic structure. Here, we follow the
same idea, but in three dimensions. As the woodpile photonic
o. KGaA, Weinheim Adv. Funct. Mater. 2010, 20, 1038–1052
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Figure 4. a) Scheme of the 3D resonator design. b) Top-view SEM image

of a woodpile photonic crystal containing several defects in its top-most

layers. The insets are magnified views of a single defect.

Figure 5. a) Schematic representation of the resonator design after silicon

double-inversion. b) FIB cross-section of a silicon photonic crystal with

defect. c) Numerical calculation of the mode profile. The grey structure

represents the distribution of the silicon and acts as a guide for the eyes.

d) Perpendicular incidence transmittance spectra into the forward direction

(entire-half space) of a structure containing one resonator, green (blue)

solid curve. The inset is a close-up of the transmittance into the forward

direction. The grey area displays the width of the complete photonic

bandgap.
crystal is constructed from a two-rod motif, we actually leave out
exactly one of these building blocks, as depicted in Figure 4a.Here,
two bars (marked in red) are discontinued symmetrically to their
former intersection, forming a resonatorwith roughly oneunit cell
in size. Again, we fabricate two sets of samples. One set with the
two defect layers on top for scanning electron microscope
inspection and another one with the defects buried deep inside,
in order to demonstrate that conversion into silicon is actually
possible for such complicated structures. Figure 4b depicts a top
view of the defect layer. Four fields with 16 defects each are clearly
visible. Here, slight variations of the defect parameters are
performed exploring the optimum fabrication parameters. The
two close ups demonstrate the high fidelity of the defect design.
The intersection of the rods is nicely centered, and no obvious
bending of the surrounding structure is visible. Sample
parameters are a rod spacing of a¼ 900 nm and a length of the
intersection of d¼ 900 nm. Figure 5a depicts a sketch of the 3D
structure after silicon double-inversion. The obvious voids inside
the rods stem from the silicon chemical-vapor-deposition process.
This sketch of an ideal structure comes actually very close to the
experimental realization, as shown inFigure 5b.Here, a FIB cross-
section of a single cavity in a silicon double-inverted structure is
shown, which demonstrates the feasibility of our fabrication
approach.

To investigate this cavity, we performed scattering-matrix
calculations for a similar woodpile structure (a¼ 1mm, diameter
of the rods w¼ 0.25mm, intersection length d¼ 1mm, effective
index of refraction of the rodmaterialn¼ 3.43 (silicon), rod aspect-
ratio¼ 2). Since the scattering-matrix methodology (see
Theoretical section) requires periodicity in the lateral direction,
we employed a supercell calculationwhere a single cavity is located
in an array of 5� 5 conventional unit cells of the woodpile
structure. This ensures that the defect modes of the array are
sufficiently decoupled so that both defect frequency and the
corresponding mode profile are almost identical with that of an
individual defect. Our calculations reveal that this resonatormode
is twofold degenerate, as has been expected from the two-rodmotif
of the woodpile photonic crystal. Figure 5c shows a calculated
mode-profile for incident linear polarization parallel to the x-axis
and a structure with an overall thickness of 22 layers, whereas the
defect is situated in layers 11 and 12. The modulus of the field
amplitude is shown in a z-plane at the center of the defect between
layers 11 and 12.
Adv. Funct. Mater. 2010, 20, 1038–1052 � 2010 WILEY-VCH Verl
The secondmode can be excited with an incoming polarization
parallel to the y-axis, and the resulting field distribution will be
oriented along the y-axis. On resonance, the field enhancements is
roughly a factor of 350 (corresponding to an intensity enhance-
ment of 122 500), and this illustrates the potential of cavity modes
in high-quality 3D photonic crystals with complete photonic
bandgaps. The calculated quality factor of this defect isQ¼ 30 000
and can be further increased by increasing the amount of cladding
layers. In theory, one can even reach infinitely large quality factors
for infinitely extended samples, in sharp contrast to 2D photonic
crystals, where the quality factor stays finite (albeit large).
Calculated transmittance spectra for this defect mode in the
supercell setting are shown in Figure 5d. The fundamental
stopband around 2700 nm wavelength is clearly visible. The
complete photonic bandgap (14.3% gap-to-midgap ratio) is
marked by the gray shaded area and has been obtained from an
independent bandstructure calculation (not shown). The twofold
degeneratedefectmode is locatedat 2526.34 nm.Thecurvesdepict
the transmittance for perpendicular incidence into the forward
ag GmbH & Co. KGaA, Weinheim 1043
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direction (green solid line) and into the entirehalf-space (blue solid
line). The close-up allows for a determination of the quality factor
for the transmittance in forward direction. Furthermore, the
bandstructure calculation reveals a third defect mode inside the
complete photonic bandgap that cannot be seen in the
transmittance calculations due to a symmetry mismatch between
plane-wave excitation and mode profile under perpendicular
incidence.

To wrap up this section, we have demonstrated the feasibility of
our fabrication approach. Our novel resonator design is perfectly
compatiblewithDLWand subsequent double-inversion steps, and
results in an air-typedefect. This is an important point, as dielectric
defects cannot be reliably fabricated due to the nature of the
chemical-vapor-deposition process. In the near future, some
efforts are still required to push the complete photonic bandgap
into the technologically interesting telecommunication region
around 1.5mm. This latter task is challenging because woodpile
photonic crystals with 600 nm rod distance are required. Here, the
development of novel photoresists specially designed for 3D
nanostructuresmight bring the breakthrough, as SU-8 has already
been pushed to its limits. Regarding theory, promising avenues
such as the photonicWannier-function approach[61,62] adapted for
3Dstructureswill allow for designingoptical circuitry at acceptable
computational cost.

Besides these classical photonic crystals, there are many
interesting other structures not requiring high-dielectric-index
contrast to show novel optical properties or even functionalities.
Two examples will be given in the following sections.
4. Chiral Photonic Crystals

Large complete photonic bandgaps have been predicted for high-
index contrast silicon square-spiral structures[63] and correspond-
ing experiments using glancing-incidence deposition,[64,65] inter-
ference lithography,[66] or direct laser writing[43,67] have already
been published. In addition to complete gaps and stopbands,
theory[68] predicts polarization stopbands, i.e., stopbands for oneof
the two circular polarizations. These polarization stopbands can
give rise to strong circular dichroism,[65,69,70] which can potentially
be used for constructing polarization sensitive devices or even
compact ‘‘thin-film’’ optical diodes.[71] Inspired by cholesteric
liquid crystals, chiral layer-by-layer photonic crystals show such
polarizationbehavior.[72]Here,wewant todiscuss slightlydifferent
structures, namely cork-screw or spiral uniaxial photonic crystals
(more precisely, helical photonic crystals) as well asmore isotropic
bi-chiral photonic crystals.
Figure 6. a) SEM images of a spiral photonic crystal. The inset shows a FIB

cross-section of the structure and allows for retrieval of the structural

parameters. b) Another structure highlighting the stabilizing cross grid.

Transmittance spectra for a left-handed structure: c) experimental data and

d) numerical calculation. The dashed curves in d are calculated for a

structure without the stabilizing top-grid. Reproduced with permission

from [44]. Copyright 2007 Wiley-VCH.
4.1. Uniaxial Chiral Photonic Crystals

For circular polarization of light, the tip of the electric-field vector
follows a spiral. We thus expect a chiral resonance and, hence,
strong circular dichroism from spiral photonic crystals if the pitch
of circularly polarized light matches the pitch of the dielectric
spirals, i.e., the lattice constantaz. Theory

[68] for high-index silicon-
based structures confirms this intuitive reasoning. However, our
own scattering-matrix calculations also reveal the same trend, even
for low-index-contrast polymeric structures.[44] The parameters of
� 2010 WILEY-VCH Verlag GmbH & C
the 3D spiral photonic crystals in the following discussion are the
result of an optimizationwith respect to circular dichroism.Again,
the structures are fabricated via DLW in SU-8. As free-standing
spirals with high aspect ratios tend to fall over (during the
development process), all following structures are mechanically
supported by a 2D network of bars at or close to the top of the 3D
crystal. Furthermore, all structures for optical experiments are
again surroundedbya thickmassivewall (seeFig. 6a).Here,weuse
a round wall (rather than a rectangular one as above) in order to
evenly distribute strain inside the wall. The inset in Figure 6a
shows a close-up cross-sectional view of the sample, from which
the following parameters are extracted: in-plane lattice constant
axy ¼ 1.3mm, pitch az ¼ 1.3mm, spiral diameter d¼ 0.78mm,
34.7% volume filling fraction, lateral diameter of the spiral arms
darm ¼ 380 nm, ratio between axial and lateral diameter¼ 2.7, and
N¼ 8 lattice constants along thez-direction.As lattice constant and
pitch are equal, the structure forms a 3D photonic crystal with a
cubic cell. The FIB cross-section furthermore reveals that the
spirals are indeed open and not touching each other. To better
visualize the top grid, Figure 6b shows spirals with different
parameters (axy ¼ 1.5mm, az ¼ 1.5mm, andN¼ 4), stabilized by a
similar grid. In the following, we want to discuss only left-handed
spirals. Results obtained for right-handed structures show
essentially a complementary behavior and can be found
elsewhere.[44]

For the measurements, we extend our home-built white-light
setup: the incident polarization state of light is controlled via a
combination of a Glan–Thomson polarizer and a super-achro-
matic quarter-wave plate. This setup gives us access to the spectral
range from 500 to 2200 nm wavelength of light.

Figure 6c shows measured transmittance spectra of 3D spiral
photonic crystals with identical parameters as those shown in
Figure 6a, for normally incident left circular and right circularly
polarized light. As expected from our intuitive reasoning,
o. KGaA, Weinheim Adv. Funct. Mater. 2010, 20, 1038–1052
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propagation of light with matching polarization (blue curve) (i.e.,
left circular polarization and left-handed spirals) is strongly
inhibited for a certain bandwidth, while the other circular
polarization (red curve) is transmitted. In the polarization
stopband around the 1.8-mm wavelength, the transmittance in
the ‘‘low state’’ is around 5% compared to about 95% in the ‘‘high
state,’’ corresponding to a ratio approaching twenty.

Figure 6d depicts the corresponding calculated transmittance.
Again, we employ our scattering-matrix approach. The geome-
trical parameters are the same as in the experiment, and we also
account for the ellipsoidal shape of the voxels to faithfully
reproduce the proper filling fraction of the sample. The refractive
indices used for SU-8 and the glass substrate are nSU-8¼ 1.57 and
nglass¼ 1.52, respectively. We account for the finite opening angle
of the focused incident light in the experiment; the calculated
transmittance spectra are averaged over a half-opening angle of 58
with respect to the normal. Note again the overall very good
agreement between experiment and theory: The symmetry, the
spectral position of the polarization stopband, and the depth of the
transmittance minima are reproduced very well. Quantitative
deviations between experiment and theory at wavelengths at the
shorter wavelength-side of the polarization stopband, where
many different photonic bands contribute, are likely due to slight
sample imperfections. Moreover, one should be aware that the
angle-averaging also influences the detailed shape of the
spectra, and it is difficult to find the proper weight of all
contributing angles. The solid lines in Figure 6d correspond to the
full structure of the experiment. Thedashed lines are calculated for
a structurewithout thestabilizinggrid,hencedemonstratingagain
that the stabilizing grid does indeed not introduce any circular
dichroism.

Compared to the circular dichroismobserved for chiral layer-by-
layer photonic crystals,[72] we find a rather distinct behavior.While
in the case of chiral layer-by-layer photonic crystals the matching
polarization is strongly suppressed in the fundamental polariza-
tion stopband, but recovers to nearly the same transmittance
values for shorter or longer wavelengths, we observe here a
behavior on the short wavelength side dominated by diffraction
into higher orders and hence no recovery back to nearly 100%
transmittance. What is even more striking is the behavior of the
nonmatchingpolarization.While in the caseof chiral layer-by-layer
photonic crystals this polarization does not experience any change
whatsoever around the position of the fundamental polarization
stopband,weobservebasically the samespectral dependence as for
the matching polarization, but blue-shifted by roughly 200 nm in
wavelength. This behavior can be explained as follows:[44] if the
pitch of the light spiral inside the structure (i.e., the material
wavelength) roughly matches the pitch of the dielectric spiral (i.e.,
lattice constant az), the light field peaks inside the dielectric spiral
for both senses of rotation, similar to the behavior of light at the
lower dielectric edge of a photonic bandgap (dielectric mode).
While the fundamental stopband in a photonic crystal appears at a
wavelength roughly twice the lattice constant, we find here the
resonance at wavelengths matching the spiral pitch; hence, we
operate in the second Brillouin zone. However, for the matching
sense of rotation, the light field is more strongly confined to the
dielectric, resulting in a higher effective index, and hence, in a
longer vacuum wavelength of light for the polarization stopband.
Therefore, oneobserves a polarization stopband for eachof the two
Adv. Funct. Mater. 2010, 20, 1038–1052 � 2010 WILEY-VCH Verl
circular polarizations (compareFig. 6c andd).Obviously, the short-
wavelength polarization stopband is not attractive for applications
because the transmittance in the opposite circular polarization
does not come close to unity.

In contrast to chiral layer-by-layer structures, spiral architec-
tures offer the unique opportunity to align the spirals not only
along one principal axis, but along all three dimensions. Along
these lines one could create a material, which might show a
complete polarization stopband for one circular polarization while
being perfectly transparent for the other one. Following this idea
leads to so-called bi-chiral photonic crystals.
4.2. Bi-chiral Photonic Crystals

The architecture of the bi-chiral photonic crystals that we have
recently proposed and realized for the first time[45] is inspired by
so-called blue-phase cholesteric liquid crystals.[73–75] Our struc-
tures consist of left- or right-handed circular dielectric spirals
arranged along the three orthogonal axes of a cubic lattice. There
are two ways to arrange three orthogonal spirals in space, one with
a left- and one with a right-handed so-called corner. Therefore, a
total of four possible combinations are available. Nature provides
in theblue-phase systemonly thosewithopposite handedness, i.e.,
left-handed motifs on right-handed corners and vice versa.[76] As
there are two types of chirality combined in one structure, we refer
to them as ‘‘bi-chiral.’’ The advantage of direct laser written
structures is that we are now able to realize all four different
combinations and to tune the optical properties over a broad range
by adjusting the size of the structures.

The construction principle of our bi-chiral photonic crystals is
further illustrated in Figure 7. By displacing the fictitious axes of
the spirals by their radius as shown on the right-hand side of
Figure 7a, a connection point of the three spirals in the center of
each cubic cell can be enforced. After displacing two of the three
axes, one is leftwith twonon-equivalent options for positioning the
third axis. This choice introduces a second type of chirality to the
overall structure that is distinct from the chirality of the spirals. It is
clear, by construction, that the chiral optical properties will be
identical for propagation of light along the three cubic axes—in
sharp contrast to a uniaxial structure.

Figure 7b displays the four possible combinations of the two
chiralities. The nomenclature for the following discussion will
address a combination of right-handed spirals with a left-handed
corner as right/left; the three other combinations are similarly
addressed.

The complete bi-chiral photonic crystal is depicted in Figure 7c.
The right/right structure consists of three right-handed spirals
oriented along the x-axis (red spiral), along the y-axis (blue spiral),
and along the z-axis (green spiral). All spiral pitches are equal to
maintain the cubic cell that we have already discussed for the
uniaxial structure. Before addressing the optical properties of
these structures, we should understand the optical properties of
the respectivebuildingblocks.Fromthe last section, it is clear that a
single spiral will show strong circular dichroism for light
propagating along the spiral’s axis. Nevertheless, a true chiral
object shows chirality regardless from which direction it is looked
at. Hence, a right-handed spiral should interact differently with
left- or right-circular polarized light even under propagation
ag GmbH & Co. KGaA, Weinheim 1045
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Figure 7. Bi-chiral photonic crystals simultaneously exhibit two distinct types of chirality. The

first type stems from the handedness of the circular spirals that are arranged on a simple-cubic

3D lattice. a) Displacing the central spiral axes by half the spiral diameter enforces a

mechanical connection point of the three spirals in the center of the unit cell. The orientation

of these three fictitious spiral axes (the ‘‘corner’’) introduces a second type of chirality.

b) Combined with the chirality of the spirals, four distinct types of bi-chiral photonic crystals

result, i.e., left/left, right/right, left/right, and right/left-handed structures. c) Complete

structure. The color coding is the same as in a and b, and serves as a guide for the eye.

Reproduced with permission from [45]. Copyright 2009 Wiley-VCH.
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perpendicular to its obvious axis. This behavior is demonstrated in
the numerical calculations shown in Figure 8. In contrast to
Figure 6, we plot here the difference in transmittance between left-
and right-circular polarized light (LCP and RCP, respectively). A
difference of þ1 in this plot means that only LCP light is
transmitted; zero corresponds to equal transmittance of LCP and
RCP light; and�1 difference indicates 100% transmittance of the
RCP light and 0% for LCP. The insets in all parts of the figures
display the configuration under study; the light is impinging along
the z-axis. In Figure 8a a similar case is displayed as already shown
in Figure 6. We find a polarization stopband around 4.75 mm—
RCP light is reflected back from the right-handed spiral and LCP
light is nicely transmitted. The parameters of the spiral are as
follows: elliptical cross-section as in the experiment, a lattice
constant and pitch of 4mm, a spiral diameter of 0.9a, and the index
of refraction of SU-8 n¼ 1.57. If we now calculate the response for
the same spiral under perpendicular incidence towards its axis, we
still keep strong circular dichroism, although slightly shifted to
shorter wavelength (see Fig. 8b). This shift can also be understood
along the lines of our above reasoning: here, neither the
‘‘matching’’ nor the ‘‘nonmatching’’ circular polarization can
actually follow the spiral; nevertheless, the electric field of RCP
light is still more confined to the dielectric structure, resulting in
the observed circular dichroism. Combining two spirals as shown
in Figure 8c increases the overall filling fraction of the structure
and, hence, the effective refractive index. As a result, the
polarization stopband shifts towards longer wavelength. The
combination of all three spirals finally results in a very pronounced
stopband around 5.1mmwavelength (see Fig. 8d). This computed
behavior is also found experimentally. Figure 9a shows an electron
microscopy image of a right/right structure and Figure 9b the
corresponding measurement, plotted in the same way as in
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Figure 8. So far, the behavior under perpendicular
incidence does not look too different from that of
the uniaxial structures. However, the bi-chiral
photonic crystal should provide a certain isotropy
regarding its chiral properties as this structure
shows essentially the same optical properties
along each of the three principal axes.

To test this hypothesis, we calculated angle-
resolved transmittance spectra for a bi-chiral
photonic crystal made from silicon. LCP (RPC)
light is impinging under 458with respect to the z-
axis, and the azimuthal angle is rotated from 08 to
3608. The resulting LCP–RCP transmittance is
shown in Figure 10. Blue (yellow) areas corre-
spond to high transmittance of LCP (RCP) light.
Around 2.5mm wavelength an almost flat polar-
ization stopband is observed. However, one
should be cautious in drawing conclusions
regarding complete polarization bandgaps on
the basis of these data. Note, that we have
calculated the optical response for a finite
structure with real surfaces. Light impinging
under an angle will be refracted at the photonic
crystal interface. At this point, its polarization
state generally changes. Hence, one cannot
necessarily conclude that the dispersion observed
in thenumerical calculation is connectedwith real
anisotropy (or isotropy), but might also stem from the different
coupling of the incoming light to themodes of the photonic crystal.

Although bi-chiral photonic crystals are truly complex 3D
structures, they still rely on periodicity. The optical properties can
be numerically predicted in a straightforward manner. In the next
section we discuss 3D quasiperiodic structures.
5. 3D Photonic Quasicrystals

Quasicrystals[77–81] are a class of structures that do not have
translational symmetry, but obey local rotational symmetry, very
often with symmetry axes forbidden for regular crystals, e.g., five-
fold rotational symmetry. Originally discovered for rapidly
annealed metallic alloys by Shechtman,[77] photonic quasicrystals
are man-made structures. As quasicrystals combine both, long-
range order as in photonic crystals (although not in a repeating
fashion) and local arrangements of atoms in fixed positions but
with different configuration of the surrounding atoms like in
glasses, they promise to possess unusual optical transport
properties. While 2D photonic quasicrystals have been studied
for several years,[82–84] 3D photonic quasicrystals for near-infrared
frequencies were recently introduced by some of us.[46] Again,
fabrication with DLW is advantageous, as the positions of the
fictitious atoms can be precisely controlled. Nevertheless, other
groups started fabrication of photonic quasicrystals by means of
holographic laser lithography[85,86] and phase-mask hologra-
phy.[87,88] How can one determine the positions of the fictitious
atoms? Quasicrystals can be generated by projection of a higher-
dimensional rotated ordinary crystal into three dimensions. This
mathematical procedure is known as the cut-and-project
method.[80] As this method only delivers the positions of the
Adv. Funct. Mater. 2010, 20, 1038–1052
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Figure 8. Numerical calculations: LCP–RCP transmittance of structures

which are eight unit cells high and infinitely extended in the xy-plane. The

corresponding unit cell is shown as an inset in a–d. Color coding is the

same as in Fig. 7.

Figure 9. a) SEM image of a right/right bi-chiral photonic crystal.

b) Experimental LCP–RCP transmittance data measured at a structure

similar to the one shown in a. The inset shows the corresponding unit cell

of the structure.

Adv. Funct. Mater. 2010, 20, 1038–1052 � 2010 WILEY-VCH Verl
fictitious atoms, one still has to correctly determine the
connections between these atoms. For Shechtman’s quasicrystals,
this is not a problem as binding forces keep the atoms in place.
However, for the fabrication of amechanically stable 3Dpolymeric
structure, this is a crucial aspect. Furthermore, the air voids also
need to be connected, as the photoresist cannot be washed out of
the underexposed regions otherwise. We address these points
starting with a 6D simple-cubic lattice of fictitious points,
connected to all of their nearest neighbors by fictitious segments.
To achieve an icosahedral quasicrystal structure, this 6D simple-
cubic crystal is rotated around the point (0,0,0,0,0,0) by the 6� 6
matrix[46,89]M given by

M ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2t þ 4

p

t t 0 �1 0 1

0 0 1 t 1 t

1 �1 �t 0 t 0

t �t 1 0 �1 0

�1 �1 0 �t 0 t

0 0 t �1 t �1

0
BBBBBBBB@

1
CCCCCCCCA

(1)
ag GmbH & Co. KGaA, Weinheim 1047
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Figure 10. Numerical calculation: angular resolved LCP–RCP transmit-

tance spectra of a silicon right/right bi-chiral photonic crystal. Blue areas

correspond to 100% transmittance of LCP light; yellow areas to 100%

transmittance of RCP light. Light is impinging with 458 of incidence with

respect to the surface normal.
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where t¼ (51/2þ 1)/2 is the golden mean. The first three
coordinates represent the real space position of the atom.
Whether an atom is projected at all is decided by the second three
coordinates of the resulting 6D vector. If these coordinates fall
into the so-called acceptance domain, the real space atom is
Figure 11. Laue diffraction diagrams of polymeric quasicrystals. a,e,i) Close-up electron micros-

copy images of icosahedral structures with l¼ 2 mm, d¼ 100 mm, and local fivefold (N¼ 15) (a),

threefold (N¼ 21) (e), and twofold (N¼ 13) (i) real-space symmetry. The green spots in columns

two and three are the measured Laue diffraction diagrams of 3D quasicrystal templates using a

532 nm laser. b,f,j) Icosahedral structures with 4mm thickness. c,g,k) Corresponding Laue

diagrams for samples with 8mm thickness. d,h,l) The green spots are the calculated Laue

diffraction diagrams. The sizes and brightnesses of the spots are ameasure of the diffraction peak

intensity. Reproduced with permission from [46]. Copyright 2006 Nature Publishing Group,

Macmillan.
projected. Selecting atoms with an acceptance
domain is necessary, as the projection of all
atoms in the 6D space would result in a dense
set of atoms in real space. Real space atoms are
connected with rods of length l if their
counterparts in 6D space are also connected.
Along these lines the underlying icosahedral
symmetry is not disturbed by the connecting
lines. Here, we use l¼ 2mm, resulting in near-
IR photonic quasicrystals.

Proper orientation of the projected 3D
quasicrystal allows the inspection of all
principal symmetry axes. Figure 11a,e,i show
electron microscopy images of a photonic
quasicrystal oriented along the local fivefold,
threefold, and twofold axes.

To further characterize the symmetry-prop-
erties of these quasicrystals Laue diffraction
patterns are measured. For this task a solid-
state laser at 532-nm wavelength is focused
onto the samples by means of a 5-cm focal
length lens. The Laue diffraction pattern is
scattered off a white sheet of paper and
photographed (the overwhelming 0th order
diffracted peak is blocked in order not to
overload the camera). The three columns of
Figure 11 starting with (b), (c), and (d)
correspond to Laue diffraction diagrams
measured on samples with 4mm and 8mm
thickness and a corresponding numerical
calculation. Following Ref. 80, these Laue
� 2010 WILEY-VCH Verlag GmbH & C
diagrams are generated by first computing the diffraction pattern
of the constituting 6D simple-cubic translational lattice. This
diffraction pattern is then projected onto the first three
coordinates. This procedure leads to a dense set of diffraction
peaks. The intensity of each peak is proportional to sinc2(p D k),
with D being the extension of the projected Wigner–Seitz cell
and the modulus k of the 3D vector formed by the lower
three components of the 6D reciprocal vector. The resulting
intensity of a diffraction peak is indicated by the area of the
green spot. Spots below an arbitrarily chosen intensity are not
shown for clarity.

This procedure obviously leads to good agreement between
experiment and theory. Especially, the tenfold symmetry expected
for the fivefold axis in real space is nicely obtained. Note, that with
an increasing number of lattice planes, the diffraction peaks
become sharper. This is obvious from comparing the second and
third columns inFigure 11, but can also be observed increasing the
number of lattice planes N while going from twofold (N¼ 13) to
fivefold (N¼ 10), and finally to threefold (N¼ 21) symmetry (see
Fig. 11j,b,f). While the computation of the Laue diagrams is
relatively simple and straightforward, the quasi-periodicity
prevents a simple approach for calculating transmittance and
reflectionspectra.As the abovescattering-matrix approach isbased
on structures that are periodic in the xy-plane, the spectral
properties of the quasicrystals itself cannot directly be computed
along these lines. However, knowledge of so-called ‘‘approx-
imants’’ from previous work on Shechtman’s quasicrystals comes
to the rescue.
o. KGaA, Weinheim Adv. Funct. Mater. 2010, 20, 1038–1052



F
E
A
T
U
R
E
A
R
T
IC

L
E

www.MaterialsViews.com
www.afm-journal.de

Figure 12. 3D icosahedral photonic quasicrystal and its approximants. The

left-hand side column shows computer generated images, the right-hand

side column SEM images of corresponding SU-8 structures fabricated via

direct laser writing. a,b) The 3D quasicrystal (twofold local axis), c,d) the

3/2 approximant, e,f) the 2/1 approximant, and g,h) the 1/1 approximant.

The red-highlighted areas in the left-hand side column mark the unit-cell of

the corresponding approximant. Reproduced with permission from [90].

Copyright 2009 Optical Society of America.
5.1. Approximants

For the construction of rational approximants we employ basically
the same mathematical procedure used for the generation of the
quasicrystal.[91] Recall, that we have employed an irrational
number t for the matrix M, which is responsible for the rotation
of the structure with respect to the axes of the coordinate system.
This irrational number ensures that under the projection a
quasiperiodic structure emerges. Rather, choosing a rational
number close to t leads to a periodic structure. The closer the
rational number t comes to the original number, the larger the
resulting unit cell size of the approximant becomes in real space.
Inside this unit cell, the approximant is strictly identical to the
actual quasicrystal. Outside of that unit cell, the approximant only
qualitatively resembles the quasicrystal. This aspect is graphically
illustrated in Figure 12 for the icosahedral 3D photonic
quasicrystal of interest and for a local twofold symmetry axis.
Fromthe top tobottomrow,Figure12also shows theassociated3/2
(Fig. 12c), 2/1 (Fig. 12e), and 1/1 (Fig. 12g) approximants. The unit
cell is highlighted in red in each case. These approximants are
fabricated just like the quasicrystals, allowing for an experimental
decision, regarding which order of approximants is sufficient to
model the optical properties of the full quasicrystal.[91] The right
column of Figure 12 shows electron microscopy images of the
experimentally realized approximants. Comparison to the left
column reveals the high fidelity of the direct laser written
structures. Angle-resolved spectroscopy on the approximants as
well as on the quasicrystals demonstrates that the 2/1 approximant
is already sufficient to describe the optical properties of the full
quasicrystal.[91]

With this approximant approach, we have established a
numerical tool to calculate the optical properties of the
experimentally realized photonic quasicrystals. Furthermore, this
allows us now to tackle the photonic transport properties of the
quasicrystals. Experimentally,wemeasure the transport properties
in an upconversion experiment (for details see Ref. 46). Time-
resolving the response for incident femtosecond laser pulses
reveals a large shift of the transmitted pulsemaximum as well as a
trailing exponential tail.[46] Figure 13a shows the experimental data
obtained on a quasicrystal oriented along its threefold axis. The
dashed curve represents the reference pulse, measured with only
theglass substrate andwithout thesample.Moving thesample into
the beam generates a response shown by the solid curve. A single-
exponential fit to the trail (solid red line) reveals a decay time of
roughly 102 fs. Such exponential tails have previously been
observed in disordered systems, wheremultiple scattering of light
on thedisordered sites leads to adiffusive transport throughout the
structure. Thus, at first sight, one might also expect that small
fabricational deficiencies—although not perceivable by eye from
the SEM images—might lead to similar behavior in the photonic
quasicrystals. This is a valid argument. However, it has been
unclear whether or not even a perfect photonic quasicrystal might
also deliver suchbehavior.Using the rational approximants,we are
now in a position to directly test this question.

We consider a linearly polarized incidentGaussian optical pulse
of 150-fs in duration. For each diffraction order, the square
modulus of the Fourier transform of the frequency-dependent
transmitted electric field orthogonal to the incident polarization[46]
Adv. Funct. Mater. 2010, 20, 1038–1052 � 2010 WILEY-VCH Verl
delivers the time-resolved intensity. The orthogonal polarization
configuration is advantageous as directly transmitted light is
suppressed. Hence, we predominantly observe the light that has
interacted with the sample. The sum over the various diffracted
orderswithinanopeningangleofW¼ 278 (corresponding to typical
experimental conditions[46]) is depicted in Figure 13b. In our
corresponding scattering-matrix calculations, the rod length is
l¼ 1mm and the pulse center wavelength is 735 nm. Due to the
scalability of Maxwell’s equations, the strictly identical result is
obtained for 2-mm rod length and 1.47-mm center wavelength,
hence corresponding exactly to the parameters used in our
experiments.[46] The numerical results qualitatively reproduce the
experimental behavior: the maximum of the transmitted pulse
envelope is shiftedwith respect to time zero and an exponential tail
develops. Note, that the approximants used in the calculations are
free of any fabricational disorder. The experimentally observed
ag GmbH & Co. KGaA, Weinheim 1049
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Figure 13. Time-resolved transmittance: a) experimental data (solid)

through a quasicrystal oriented along its threefold axis for normal incidence

of linear polarized light. The transmitted light is detected in the linear

polarization orthogonal to the incident one. b) Calculated transmittance

(solid) through a 2/1 approximant of a quasicrystal (see Fig. 12e) for

normal incidence of a 150-fs Gaussian optical pulse centered around

735 nm. The emerging light is collected in an opening angle of W¼ 278
around the surface normal and in the linear polarization orthogonal to the

incident one. The calculated behavior nicely agrees with the experimental

one (a). Dashed lines mark the reference without the sample, and solid red

curves show the single-exponential fit to the tail (b). Reproduced with

permission from [90]. Copyright 2009 Optical Society of America.
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behavior is therefore compatible with an intrinsic property of
quasicrystals and not necessarily a consequence of low sample
quality. Furthermore, experimentally as well as theoretically a
strong wavelength dependence of this temporal behavior is
found.[90] A detailed understanding of the underlying transport
channels and their dependence on symmetry and wavelength is at
the heart of future studies. Introducing functional defects into
photonic quasicrystals might be a further step. Here, the very
different atomic neighborhoods throughout the quasicrystals will
lead to much richer optical properties than known from ‘‘normal’’
photonic crystals. Furthermore, symmetries other than icosahe-
dral symmetries can be studied.
� 2010 WILEY-VCH Verlag GmbH & C
6. Conclusions and Outlook

Over the course of about a decade, direct laserwriting hasmatured
from a laboratory curiosity to a reliable and versatile lithography
tool allowing for the reliable fabrication of 3D polymer
nanostructures down to about 100-nm lateral feature size—even
using commercially available instruments (e.g., http://www.
nanoscribe.de, last accessed February, 2010). Subsequent coating,
inversion, or double-inversion of these templates using atomic-
layer deposition and/or chemical-vapor deposition allows for
converting these structures, e.g., into silicon. Some of the most
recent developments in this field are reviewed in this article. This
comprises 3D silicon-based near-IR complete photonic bandgap
materials, defect cavities therein, uniaxial chiral polymeric
photonic crystals,more isotropic bi-chiral helical photonic crystals
that might allow for complete polarization stopbands, and near-IR
3D photonic quasicrystals.

Yet, these and related technologies have much more to offer
than just dielectric structures. For example, nonlinear or metallic
constituent materials can be introduced. Regarding the latter,
silver coating of polymer templates by means of chemical-vapor
deposition[91] or gold infilling via electroplating[51] has led to
interesting bi-anisotropic and chiral optical properties of 3D
metamaterials, respectively. Furthermore, tailored 3D mechani-
cally flexible structures can serve as novel scaffolds for biological
cell culture studies.[92]

The spatial resolution of direct laser writing as described in this
review can be much smaller than the free-space wavelength of the
writing laser used. Nevertheless, the minimum feature size is
fundamentally limited by the wavelength of light. In contrast, the
spatial resolution of stimulated emission depletion (STED)
microscopy[93] is, essentially, diffraction-unlimited. Inspired by this
breakthrough in microscopy, Refs. [94] and [95] have recently
demonstrated feature-size reductionswith lithographysetupsusing
two lasers.Alongthese lines,minimumfeaturesizesof sometensof
nanometers might come into reach within the next few years.
7. Experimental

Direct Laser Writing: For the direct-laser writing of the structures shown
throughout this article, laser light is coupled into an inverted microscope
(Leica DM-IRM and Zeiss AxioObserver) and focused into the negative-
tone photoresist SU-8 (MicroChem) using a microscope objective with a
numerical aperture of 1.4. SU-8 is spincoated onto thin glass cover slips
(170mm thickness) and prebaked following the procedure required by the
manufacturer. The sample is mounted onto a three-axis piezo stage
(200mm� 200mm� 20mm or 300mm� 300mm� 300mm travel, Physik
Instrumente) and scanned with respect to the focus. For the fabrication of
the photonic crystal heterostructure, quasicrystals, and approximants, a
regeneratively amplified Ti:Sa laser (120 fs pulse duration at a wavelength
of 800 nm, SpectraPhysics Hurricane) is used as the laser source. For the
uniaxial spiral structure, the laser source is a Ti:Sa oscillator (100 fs pulse
duration at a wavelength of 800 nm). Laser intensity in both setups is
controlled with a half-wave plate/polarizer combination and an electro-
magnetically operated shutter in front of the microscope objective. For the
fabrication of the bi-chiral photonic crystals and the photonic-crystal-cavity
structures a commercial DLW system is used (PhotonicProfessional,
Nanoscribe GmbH), equipped with a frequency-doubled ultrafast fiber-
laser (below 150 fs pulse duration at 780 nm wavelength) as laser source.
o. KGaA, Weinheim Adv. Funct. Mater. 2010, 20, 1038–1052
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After exposure the samples are post-baked and developed following the
instructions for the usage of SU-8.

Transmittance Spectroscopy: The setups are described in detail in Refs.
40, 44, and 45.

Time-Resolved Upconversion Spectroscopy: The setup is described in
Ref. 46.
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8. Theoretical

Scattering-Matrix Calculations: In the present article, we have focused on
the fabrication and characterization of 3D structures that Exhibit 2D
periodicity in the lateral xy-plane and are finite in the third direction (z-axis).
Experimentally accessible are the values of the transmittance and
reflectance, either angularly resolved, e.g., for specific diffraction orders,
or angularly integrated, i.e., the total transmittance and reflectance into a
half-space. Therefore, corresponding computations for such systems are
closely connected to certain problems in the area of diffractive optics where
plane waves of given frequency and incoming angle illuminate a rather
complex grating structure that is several wavelengths deep and possesses a
lateral unit cell with complicated geometries and large index contrast that
changes with depth. This implies that the full vectorial nature of the
electromagnetic field has to be taken into account and, thus, limits the
number of methods that can be applied.

Perhaps the most popular methodology for solving these problems
employs a two-stage approach. First, the structure is discretized along the
propagation direction in a stair-case fashion (‘‘slicing’’); i.e., in each slice the
material parameters are assumed to be constant along the z-direction, but
their lateral distributions are different from slice to slice. As a result of this
approximation, one may—in each slice—decompose the electromagnetic
field into a set of eigenmodes. In the lateral plane, these modes are Bloch
modes and they exhibit an exponential dependence along the z-axis. These
modes and their propagation constants (wave-vector components in z-
direction) are determined via a plane-wave expansion that implements that
lateral periodicity. This allows determining both types of modes, i.e., those
that propagate and those that are evanescent along the z-direction. In
particular, it is important to retain, besides all propagating modes, a
sufficient number of evanescent modes so that near-field effects can
adequately be described.

In a second step, the different expansions of the electromagnetic field in
different slices have to be made consistent by enforcing appropriate
boundary conditions at the interfaces between slices. As a result, two
adjacent slices may be combined to one larger slice. Here, care has to be
exerted in order to avoid exponentially growing factors that have their
origin in the evanescentmodes alluded to above. This is facilitated by one of
several possible recursive scattering-matrix algorithms [96] that relate the
outgoingmodes from a given slice, i.e., themodes that are propagating and
evanescently decaying away from the slice, to the corresponding incoming
modes onto that slice, i.e., themodes that are propagating and evanescently
decaying towards the slice. When all internal interfaces between slices have
been eliminated, the total scattering matrix associated with the entire
structure is obtained andonemay readoff the transmittance and reflectance
coefficients into the corresponding Bragg orders.

In the diffractive optics community, the approach described above is
generally referred to as rigorous coupled wave analysis (RCWA) or Fourier
modalmethod(FMM) [97–100]while in thephotonic-crystal community it is
more often known as the scattering-matrix approach [101,102]. In this
review, we have used the latter terminology throughout.

Finally, we want to note that similar to the case of plane-wave-based
photonic band structure calculations, proper Fourier factorization
[99,100,103] leads to considerable convergence speed-ups which are of
paramount importance when large index contrast or complicated unit cells
(such as in supercell calculations) have to be analyzed.When equippedwith
appropriate absorbing boundary conditions, the scattering-matrix approach
can even be extended to nonperiodic systems [104,105].
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