Publications


2024
Journal Articles
  1. Coupling light into a guided Bloch surface wave using an inversely designed nanophotonic cavity
    Tang, Z.; Guo, T.-L.; Augenstein, Y.; Troia, A.; Liu, Y.; Roussey, M.; Rockstuhl, C.; Descrovi, E.
    2024. Applied Physics Letters, 125 (18), Art.-Nr.: 181103. doi:10.1063/5.0232450
  2. A Framework to Compute Resonances Arising from Multiple Scattering
    Fischbach, J. D.; Betz, F.; Asadova, N.; Tassan, P.; Urbonas, D.; Stöferle, T.; Mahrt, R. F.; Burger, S.; Rockstuhl, C.; Binkowski, F.; Sturges, T. J.
    2024. Advanced Theory and Simulations, Art.-Nr.: 2400989. doi:10.1002/adts.202400989
  3. Electromagnetic scalar product in spatially bounded domains
    Vavilin, M.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2024. Physical Review A, 109 (4), Art.-Nr.: 043506. doi:10.1103/PhysRevA.109.043506
  4. Expanding momentum bandgaps in photonic time crystals through resonances
    Wang, X.; Garg, P.; Mirmoosa, M. S.; Lamprianidis, A. G.; Rockstuhl, C.; Asadchy, V. S.
    2024. Nature Photonics. doi:10.1038/s41566-024-01563-3
  5. Inverse design of polaritonic devices
    Kuster, O.; Augenstein, Y.; Rockstuhl, C.; Sturges, T. J.
    2024. Applied Physics Letters, 125 (18), Art.-Nr.: 181102. doi:10.1063/5.0229810
  6. Tensor product space for studying the interaction of bipartite states of light with nanostructures
    Freter, L.; Zerulla, B.; Krstić, M.; Holzer, C.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2024. Physical Review A, 110 (4), 043516. doi:10.1103/PhysRevA.110.043516
  7. Inverse-Designed 3D Laser Nanoprinted Phase Masks to Extend the Depth of Field of Imaging Systems
    Sturges, T. J.; Nyman, M.; Kalt, S.; Palsi, K.; Hilden, P.; Wegener, M.; Rockstuhl, C.; Shevchenko, A.
    2024. ACS photonics, 11 (9), 3765–3773. doi:10.1021/acsphotonics.4c00953
  8. Circular dichroism of relativistically–moving chiral molecules
    Whittam, M.; Zerulla, B.; Krstić, M.; Vavilin, M.; Holzer, C.; Nyman, M.; Rebholz, L.; Fernandez-Corbaton, I.; Rockstuhl, C.
    2024. Scientific Reports, 14 (1), Art.-Nr.: 16812. doi:10.1038/s41598-024-66443-w
  9. Roadmap on photonic metasurfaces
    Schulz, S. A.; Oulton, R. F.; Kenney, M.; Alù, A.; Staude, I.; Bashiri, A.; Fedorova, Z.; Kolkowski, R.; Koenderink, A. F.; Xiao, X.; Yang, J.; Peveler, W. J.; Clark, A. W.; Perrakis, G.; Tasolamprou, A. C.; Kafesaki, M.; Zaleska, A.; Dickson, W.; Richards, D.; Zayats, A.; Ren, H.; Kivshar, Y.; Maier, S.; Chen, X.; Ansari, M. A.; Gan, Y.; Alexeev, A.; Krauss, T. F.; Di Falco, A.; Gennaro, S. D.; Santiago-Cruz, T.; Brener, I.; Chekhova, M. V.; Ma, R.-M.; Vogler-Neuling, V. V.; Weigand, H. C.; Talts, Ü.-L.; Occhiodori, I.; Grange, R.; Rahmani, M.; Xu, L.; Kamali, S. M.; Arababi, E.; Faraon, A.; Harwood, A. C.; Vezzoli, S.; Sapienza, R.; Lalanne, P.; Dmitriev, A.; Rockstuhl, C.; Sprafke, A.; Vynck, K.; Upham, J.; Alam, M. Z.; De Leon, I.; Boyd, R. W.; Padilla, W. J.; Malof, J. M.; Jana, A.; Yang, Z.; Colom, R.; Song, Q.; Genevet, P.; Achouri, K.; Evlyukhin, A. B.; Lemmer, U.; Fernandez-Corbaton, I.
    2024. Applied Physics Letters, 124 (26), Art.-Nr.: 260701. doi:10.1063/5.0204694
  10. Two-step homogenization of spatiotemporal metasurfaces using an eigenmode-based approach
    Garg, P.; Lamprianidis, A. G.; Rahman, S.; Stefanou, N.; Almpanis, E.; Papanikolaou, N.; Verfürth, B.; Rockstuhl, C.
    2024. Optical Materials Express, 14 (2), 549–563. doi:10.1364/OME.509897
  11. Multi‐Scale Modeling of Surface Second‐Harmonic Generation in Centrosymmetric Molecular Crystalline Materials: How Thick is the Surface?
    Zerulla, B.; Díaz, A. L.; Holzer, C.; Rockstuhl, C.; Fernandez-Corbaton, I.; Krstić, M.
    2024. Advanced Optical Materials, 12 (18), Art.-Nr.: 2400150. doi:10.1002/adom.202400150
  12. Chiral plasmonic metasurface assembled by DNA origami
    Gieseler, N.; Moench, S.; Beutel, D.; Pfeifer, W. G.; Domínguez, C. M.; Niemeyer, C. M.; Rockstuhl, C.
    2024. Optics Express, 32 (9), 16040 – 16051. doi:10.1364/OE.520522
  13. Polarization-dependent effects in vibrational absorption spectra of 2D finite-size adsorbate islands on dielectric substrates
    Zerulla, B.; Krstić, M.; Chen, S.; Yu, Z.; Beutel, D.; Holzer, C.; Nyman, M.; Nefedov, A.; Wang, Y.; Mayerhöfer, T. G.; Wöll, C.; Rockstuhl, C.
    2024. Physical Chemistry Chemical Physics, 26 (18), 13683–13693. doi:10.1039/d4cp00860j
  14. Separating the Material and Geometry Contribution to the Circular Dichroism of Chiral Objects Made from Chiral Media
    Rebholz, L.; Krstić, M.; Zerulla, B.; Pawlak, M.; Lewandowski, W.; Fernandez-Corbaton, I.; Rockstuhl, C.
    2024. ACS Photonics, 11 (4), 1771–1779. doi:10.1021/acsphotonics.4c00205
  15. Resonances in finite-size all-dielectric metasurfaces for light trapping and propagation control
    Ustimenko, N.; Rockstuhl, C.; Evlyukhin, A. B.
    2024. Physical Review B, 109 (11), 115436. doi:10.1103/PhysRevB.109.115436
  16. Anti‐Reflective Graded‐Index Metasurface with Correlated Disorder for Light Management in Planar Silicon Solar Cells
    Dhawan, P.; Gaudig, M.; Sprafke, A.; Piechulla, P.; Wehrspohn, R. B.; Rockstuhl, C.
    2024. Advanced Optical Materials, 12 (15), Art.-Nr.: 2302964. doi:10.1002/adom.202302964
  17. treams – a T-matrix-based scattering code for nanophotonics
    Beutel, D.; Fernandez-Corbaton, I.; Rockstuhl, C.
    2024. Computer Physics Communications, 297, Art.-Nr.: 109076. doi:10.1016/j.cpc.2023.109076
  18. Single-particle approach to many-body relaxation dynamics
    Pelc, M.; Dams, D.; Ghosh, A.; Kosik, M.; Müller, M. M.; Bryant, G.; Rockstuhl, C.; Ayuela, A.; Słowik, K.
    2024. Physical Review A, 109 (2-A), Art.-Nr.: 022237. doi:10.1103/PhysRevA.109.022237
  19. A Digital Twin for a Chiral Sensing Platform
    Nyman, M.; Garcia-Santiago, X.; Krstić, M.; Materne, L.; Fernandez-Corbaton, I.; Holzer, C.; Scott, P.; Wegener, M.; Klopper, W.; Rockstuhl, C.
    2024. Laser & Photonics Reviews, 18 (6). doi:10.1002/lpor.202300967
  20. Approximation method for fast calculation of transmission in multi-mode waveguides
    Paszkiewicz, M.; Sukhova, M.; Dörfler, W.; Rockstuhl, C.
    2024. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 41 (2), 174 – 184. doi:10.1364/JOSAA.504950
  21. A Multi‐Scale Approach to Simulate the Nonlinear Optical Response of Molecular Nanomaterials
    Zerulla, B.; Beutel, D.; Holzer, C.; Fernandez-Corbaton, I.; Rockstuhl, C.; Krstić, M.
    2024. Advanced Materials, 36 (8), Art.-Nr.: 2311405. doi:10.1002/adma.202311405
  22. Co‐sputtering of A Thin Film Broadband Absorber Based on Self‐Organized Plasmonic Cu Nanoparticles
    Drewes, J.; Perdana, N.; Rogall, K.; Hartig, T.; Elis, M.; Schürmann, U.; Pohl, F.; Abdelaziz, M.; Strunskus, T.; Kienle, L.; Elbahri, M.; Faupel, F.; Rockstuhl, C.; Vahl, A.
    2024. Particle and Particle Systems Characterization, 41 (2), Art.-Nr.: 2300102. doi:10.1002/ppsc.202300102
  23. Exploring Functional Photonic Devices made from a Chiral Metal–Organic Framework Material by a Multiscale Computational Method
    Zerulla, B.; Li, C.; Beutel, D.; Oßwald, S.; Holzer, C.; Bürck, J.; Bräse, S.; Wöll, C.; Fernandez-Corbaton, I.; Heinke, L.; Rockstuhl, C.; Krstić, M.
    2024. Advanced Functional Materials, 34 (20), Art.-Nr.: 2301093. doi:10.1002/adfm.202301093
2023
Book Chapters
  1. Data Competence for Photonic Nanotechnologies
    Meyer, J.; Asadova, N.; Beutel, D.; Çayoğlu, U.; Rockstuhl, C.; Tristram, F.
    2023. E-Science-Tage 2023. Empower Your Research – Preserve Your Data. Eds.: Vincent Heuveline, Nina Bisheh und Philipp Kling, 301–305, heiBOOKS. doi:10.11588/heibooks.1288.c18092
Journal Articles
  1. On the physical significance of non-local material parameters in optical metamaterials
    Venkitakrishnan, R.; Augenstein, Y.; Zerulla, B.; Goffi, F. Z.; Plum, M.; Rockstuhl, C.
    2023. New Journal of Physics, 25 (12), Art.-Nr.: 123014. doi:10.1088/1367-2630/ad1010
  2. Identifying regions of minimal backscattering by a relativistically moving sphere
    Whittam, M. R.; Lamprianidis, A. G.; Augenstein, Y.; Rockstuhl, C.
    2023. Physical Review A, 108 (4), Art.-Nr.: 043510. doi:10.1103/PhysRevA.108.043510
  3. Light scattering by a periodically time-modulated object of arbitrary shape: the extended boundary condition method
    Stefanou, N.; Stefanou, I.; Almpanis, E.; Papanikolaou, N.; Garg, P.; Rockstuhl, C.
    2023. Journal of the Optical Society of America B, 40 (11), Art.-Nr.: 2842. doi:10.1364/JOSAB.502171
  4. Inverse design of all-dielectric metasurfaces with accidental bound states in the continuum
    Gladyshev, S.; Karamanos, T. D.; Kuhn, L.; Beutel, D.; Weiss, T.; Rockstuhl, C.; Bogdanov, A.
    2023. Nanophotonics, 12 (19), 3767–3779. doi:10.1515/nanoph-2023-0373
  5. Physics of Complex Photonic Media and Metamaterials: feature issue introduction
    Krasnok, A.; Babicheva, V.; Rockstuhl, C.
    2023. Optical Materials Express, 13 (8), 2446–2448. doi:10.1364/OME.500975
  6. Moiré flat bands in strongly coupled atomic arrays
    Dams, D.; Beutel, D.; Garcia-Santiago, X.; Rockstuhl, C.; Alaee, R.
    2023. Optical Materials Express, 13 (7), 2003–2019. doi:10.1364/OME.486789
  7. Metasurface-based realization of photonic time crystals
    Wang, X.; Mirmoosa, M. S.; Asadchy, V. S.; Rockstuhl, C.; Fan, S.; Tretyakov, S. A.
    2023. Science Advances, 9 (14), eadg7541. doi:10.1126/sciadv.adg7541
  8. Optically induced antiferromagnetic order in dielectric metasurfaces with complex supercells
    Rahimzadegan, A.; Lepeshov, S.; Zhou, W.; Choi, D.-Y.; Sautter, J.; Arslan, D.; Zou, C.; Fasold, S.; Rockstuhl, C.; Pertsch, T.; Kivshar, Y.; Staude, I.
    2023. Journal of the Optical Society of America B: Optical Physics, 40 (5), 994–998. doi:10.1364/JOSAB.478307
  9. Neural Operator-Based Surrogate Solver for Free-Form Electromagnetic Inverse Design
    Augenstein, Y.; Repän, T.; Rockstuhl, C.
    2023. ACS Photonics, 10 (5), 1547–1557. doi:10.1021/acsphotonics.3c00156
  10. Optically tunable bianisotropy in a sphere made from an epsilon-near-zero material
    Abouelatta, M. A. A.; Safari, A.; Zahirul Alam, M.; Garcia-Santiago, X.; Beutel, D.; Cheng, L.; Boyd, R. W.; Rockstuhl, C.; Alaee, R.
    2023. Optics Letters, 48 (3), 783–786. doi:10.1364/OL.476387
  11. Exploiting graph neural networks to perform finite-difference time-domain based optical simulations
    Kuhn, L.; Repän, T.; Rockstuhl, C.
    2023. APL Photonics, 8 (3), Article no: 036109. doi:10.1063/5.0139004
  12. Maximizing the electromagnetic chirality of thin metallic nanowires at optical frequencies
    Fernandez-Corbaton, I.; Griesmaier, R.; Knöller, M.; Rockstuhl, C.
    2023. Journal of Computational Physics, 475, Art.-Nr.: 111854. doi:10.1016/j.jcp.2022.111854
  13. Activating Electroluminescence of Charged Naphthalene Diimide Complexes Directly Adsorbed on a Metal Substrate
    Rai, V.; Gerhard, L.; Balzer, N.; Valášek, M.; Holzer, C.; Yang, L.; Wegener, M.; Rockstuhl, C.; Mayor, M.; Wulfhekel, W.
    2023. Physical Review Letters, 130, Art.-Nr.: 036201. doi:10.1103/PhysRevLett.130.036201
  14. Unified lattice sums accommodating multiple sublattices for solutions of the Helmholtz equation in two and three dimensions
    Beutel, D.; Fernandez-Corbaton, I.; Rockstuhl, C.
    2023. Physical Review A, 107 (1), Art.-Nr.: 013508. doi:10.1103/PhysRevA.107.013508
  15. Floquet–Mie Theory for Time‐Varying Dispersive Spheres
    Ptitcyn, G.; Lamprianidis, A.; Karamanos, T.; Asadchy, V.; Alaee, R.; Müller, M.; Albooyeh, M.; Mirmoosa, M. S.; Fan, S.; Tretyakov, S.; Rockstuhl, C.
    2023. Laser and Photonics Reviews, 17 (3), Art.-Nr.: 2100683. doi:10.1002/lpor.202100683
  16. Transcending the Rayleigh Hypothesis with multipolar sources distributed across the topological skeleton of a scatterer
    Lamprianidis, A. G.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2023. Journal of Quantitative Spectroscopy and Radiative Transfer, 296, 108455. doi:10.1016/j.jqsrt.2022.108455
2022
Journal Articles
  1. Towards in-situ diagnostics of multi-photon 3D laser printing using optical coherence tomography
    Zvagelsky, R.; Mayer, F.; Beutel, D.; Rockstuhl, C.; Gomard, G.; Wegener, M.
    2022. Light: Advanced Manufacturing, 3 (3), Art.-Nr.: 39. doi:10.37188/lam.2022.039
  2. Exploiting geometric biases in inverse nano-optical problems using artificial neural networks
    Repän, T.; Augenstein, Y.; Rockstuhl, C.
    2022. Optics Express, 30 (25), 44365–44375. doi:10.1364/OE.474260
  3. Modeling four-dimensional metamaterials: a T-matrix approach to describe time-varying metasurfaces
    Garg, P.; Lamprianidis, A. G.; Beutel, D.; Karamanos, T.; Verfürth, B.; Rockstuhl, C.
    2022. Optics Express, 30 (25), 45832. doi:10.1364/OE.476035
  4. A T‐Matrix Based Approach to Homogenize Artificial Materials
    Zerulla, B.; Venkitakrishnan, R.; Beutel, D.; Krstić, M.; Holzer, C.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2022. Advanced Optical Materials, 11 (3), Art.-Nr.: 2201564. doi:10.1002/adom.202201564
  5. Parametric Mie Resonances and Directional Amplification in Time-Modulated Scatterers
    Asadchy, V.; Lamprianidis, A. G.; Ptitcyn, G.; Albooyeh, M.; Rituraj; Karamanos, T.; Alaee, R.; Tretyakov, S. A.; Rockstuhl, C.; Fan, S.
    2022. Physical Review Applied, 18 (5), Art.-Nr.: 054065. doi:10.1103/PhysRevApplied.18.054065
  6. Inverse design of core-shell particles with discrete material classes using neural networks
    Kuhn, L.; Repän, T.; Rockstuhl, C.
    2022. Scientific Reports, 12 (1), Art.-Nr.: 19019. doi:10.1038/s41598-022-21802-3
  7. Inverse design of cavities for Bloch Surface Waves interfaced to integrated waveguides
    Augenstein, Y.; Roussey, M.; Grosjean, T.; Descrovi, E.; Rockstuhl, C.
    2022. Photonics and Nanostructures - Fundamentals and Applications, 52, Art.-Nr.: 101079. doi:10.1016/j.photonics.2022.101079
  8. Transformation-optics modeling of 3D-printed freeform waveguides
    Nesic, A.; Blaicher, M.; Orlandini, E.; Olariu, T.; Paszkiewicz, M.; Negredo, F.; Kraft, P.; Sukhova, M.; Hofmann, A.; Dörfler, W.; Rockstuhl, C.; Freude, W.; Koos, C.
    2022. Optics Express, 30 (21), 38856–38879. doi:10.1364/OE.452243
  9. Multiscale Modeling of Broadband Perfect Absorbers Based on Gold Metallic Molecules
    Perdana, N.; Holzer, C.; Rockstuhl, C.
    2022. ACS Omega, 7 (23), 19337–19346. doi:10.1021/acsomega.2c00911
  10. A thin-film broadband perfect absorber based on plasmonic copper nanoparticles
    Perdana, N.; Drewes, J.; Pohl, F.; Vahl, A.; Strunskus, T.; Elbahri, M.; Rockstuhl, C.; Faupel, F.
    2022. Micro and Nano Engineering, 16, Art.-Nr.: 100154. doi:10.1016/j.mne.2022.100154
  11. Revising quantum optical phenomena in adatoms coupled to graphene nanoantennas
    Kosik, M.; Müller, M. M.; Słowik, K.; Bryant, G.; Ayuela, A.; Rockstuhl, C.; Pelc, M.
    2022. Nanophotonics, 11 (14), 3281–3298. doi:10.1515/nanoph-2022-0154
  12. Temperature-Dependent Plasmonic Response of Graphene Nanoresonators
    Kim, J.; Lee, G.; Menabde, S. G.; Cho, Y. J.; Rockstuhl, C.; Jang, M. S.
    2022. ACS Photonics, 9 (7), 2256–2262. doi:10.1021/acsphotonics.1c01966
  13. Tuneable helices of plasmonic nanoparticles using liquid crystal templates: molecular dynamics investigation of an unusual odd–even effect in liquid crystalline dimers
    Pawlak, M.; Bagiński, M.; Llombart, P.; Beutel, D.; González-Rubio, G.; Górecka, E.; Rockstuhl, C.; Mieczkowski, J.; Pociecha, D.; Lewandowski, W.
    2022. Chemical Communications, 58 (53), 7364–7367. doi:10.1039/D2CC00560C
  14. Toward Maximally Electromagnetically Chiral Scatterers at Optical Frequencies
    Garcia-Santiago, X.; Hammerschmidt, M.; Sachs, J.; Burger, S.; Kwon, H.; Knöller, M.; Arens, T.; Fischer, P.; Fernandez-Corbaton, I.; Rockstuhl, C.
    2022. ACS Photonics, 9 (6), 1954–1964. doi:10.1021/acsphotonics.1c01887
  15. A Multi-Scale Approach for Modeling the Optical Response of Molecular Materials Inside Cavities
    Zerulla, B.; Krstić, M.; Beutel, D.; Holzer, C.; Wöll, C.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2022. Advanced Materials, 34 (21), Art.Nr. 2200350. doi:10.1002/adma.202200350
  16. A Comprehensive Multipolar Theory for Periodic Metasurfaces
    Rahimzadegan, A.; Karamanos, T. D.; Alaee, R.; Lamprianidis, A. G.; Beutel, D.; Boyd, R. W.; Rockstuhl, C.
    2022. Advanced Optical Materials, 10 (10), Art.Nr.: 2102059. doi:10.1002/adom.202102059
  17. Modeling and measuring plasmonic excitations in hollow spherical gold nanoparticles
    Müller, M. M.; Perdana, N.; Rockstuhl, C.; Holzer, C.
    2022. Journal of Chemical Physics, 156 (9), Art.-Nr.: 094103. doi:10.1063/5.0078230
  18. In Situ Diagnostics and Role of Light‐Induced Forces in Metal Laser Nanoprinting
    Yang, L.; Rahimzadegan, A.; Hahn, V.; Blasco, E.; Rockstuhl, C.; Wegener, M.
    2022. Laser & photonics reviews, 16 (3), Art.-Nr.: 2100411. doi:10.1002/lpor.202100411
  19. Liquid Crystal Templated Chiral Plasmonic Films with Dynamic Tunability and Moldability
    Grzelak, D.; Tupikowska, M.; Vila-Liarte, D.; Beutel, D.; Bagiński, M.; Parzyszek, S.; Góra, M.; Rockstuhl, C.; Liz-Marzán, L. M.; Lewandowski, W.
    2022. Advanced Functional Materials, 32 (16), Art.Nr. 2111280. doi:10.1002/adfm.202111280
  20. Directional Coupling of Emitters into Waveguides: A Symmetry Perspective
    Lamprianidis, A. G.; Zambrana-Puyalto, X.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2022. Laser and Photonics Reviews, 16 (1), Art.NR: 2000516. doi:10.1002/lpor.202000516
  21. Towards Perfect Optical Diffusers: Dielectric Huygens’ Metasurfaces with Critical Positional Disorder
    Arslan, D.; Rahimzadegan, A.; Fasold, S.; Falkner, M.; Zhou, W.; Kroychuk, M.; Rockstuhl, C.; Pertsch, T.; Staude, I.
    2022. Advanced materials, 34 (5), Art.Nr. 2105868. doi:10.1002/adma.202105868
2021
Journal Articles
  1. Modification of the optical properties of molecular chains upon coupling to adatoms
    Müller, M. M.; Kosik, M.; Pelc, M.; Bryant, G. W.; Ayuela, A.; Rockstuhl, C.; Słowik, K.
    2021. Physical review / B, 104 (23), Art.-Nr. 235414. doi:10.1103/PhysRevB.104.235414
  2. Artificial neural networks used to retrieve effective properties of metamaterials
    Repän, T.; Venkitakrishnan, R.; Rockstuhl, C.
    2021. Optics express, 29 (22), 36072. doi:10.1364/OE.427778
  3. Optimal circular dichroism sensing with quantum light: Multiparameter estimation approach
    Ioannou, C.; Nair, R.; Fernandez-Corbaton, I.; Gu, M.; Rockstuhl, C.; Lee, C.
    2021. Physical Review A, 104 (5), A28. doi:10.1103/PhysRevA.104.052615
  4. Antireflective Huygens’ Metasurface with Correlated Disorder Made from High-Index Disks Implemented into Silicon Heterojunction Solar Cells
    Piechulla, P. M.; Slivina, E.; Bätzner, D.; Fernandez-Corbaton, I.; Dhawan, P.; Wehrspohn, R. B.; Sprafke, A. N.; Rockstuhl, C.
    2021. ACS Photonics, 8 (12), 3476–3485. doi:10.1021/acsphotonics.1c00601
  5. Investigation of dipole emission near a dielectric metasurface using a dual-tip scanning near-field optical microscope
    Abbasirad, N.; Barreda, A.; Arslan, D.; Steinert, M.; Fasold, S.; Rockstuhl, C.; Staude, I.; Setzpfandt, F.; Pertsch, T.
    2021. Nanophotonics, 10 (18), 4511–4522. doi:10.1515/nanoph-2021-0429
  6. Annual energy yield of mono- and bifacial silicon heterojunction solar modules with high-index dielectric nanodisk arrays as anti-reflective and light trapping structures
    Slivina, E.; Bätzner, D.; Schmager, R.; Langenhorst, M.; Lehr, J.; Paetzold, U. W.; Lemmer, U.; Rockstuhl, C.
    2021. Optics express, 29 (21), 34494–34509. doi:10.1364/OE.435004
  7. Multi‐Photon 4D Printing of Complex Liquid Crystalline Microstructures by In Situ Alignment Using Electric Fields
    Münchinger, A.; Hahn, V.; Beutel, D.; Woska, S.; Monti, J.; Rockstuhl, C.; Blasco, E.; Wegener, M.
    2021. Advanced materials technologies, 7 (1), Art.-Nr.: 2100944. doi:10.1002/admt.202100944
  8. Colossal enhancement of the magnetic dipole moment by exploiting lattice coupling in metasurfaces
    Rahimzadegan, A.; Alaee, R.; Karamanos, T. D.; Boyd, R. W.; Rockstuhl, C.
    2021. Journal of the Optical Society of America B: Optical Physics, 38 (9), C217-C224. doi:10.1364/JOSAB.430539
  9. All-Dielectric Crescent Metasurface Sensor Driven by Bound States in the Continuum
    Wang, J.; Kühne, J.; Karamanos, T.; Rockstuhl, C.; Maier, S. A.; Tittl, A.
    2021. Advanced Functional Materials, 31 (46), Art. Nr.: 2104652. doi:10.1002/adfm.202104652
  10. Higher order constitutive relations and interface conditions for metamaterials with strong spatial dispersion
    Goffi, F. Z.; Khrabustovskyi, A.; Venkitakrishnan, R.; Rockstuhl, C.; Plum, M.
    2021. Physics letters / A, 412, Art.-Nr.: 127570. doi:10.1016/j.physleta.2021.127570
  11. Avoiding the Center-Symmetry Trap: Programmed Assembly of Dipolar Precursors into Porous, Crystalline Molecular Thin Films
    Nefedov, A.; Haldar, R.; Xu, Z.; Kühner, H.; Hofmann, D.; Goll, D.; Sapotta, B.; Hecht, S.; Krstić, M.; Rockstuhl, C.; Wenzel, W.; Bräse, S.; Tegeder, P.; Zojer, E.; Wöll, C.
    2021. Advanced Materials, 33 (35), Art.-Nr. 2103287. doi:10.1002/adma.202103287
  12. Self-stabilizing curved metasurfaces as a sail for light-propelled spacecrafts
    Gieseler, N.; Rahimzadegan, A.; Rockstuhl, C.
    2021. Optics Express, 29 (14), 21562–21575. doi:10.1364/OE.420475
  13. Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices
    Bagiński, M.; Pedrazo-Tardajos, A.; Altantzis, T.; Tupikowska, M.; Vetter, A.; Tomczyk, E.; Suryadharma, R. N. S.; Pawlak, M.; Andruszkiewicz, A.; Górecka, E.; Pociecha, D.; Rockstuhl, C.; Bals, S.; Lewandowski, W.
    2021. ACS nano, 15 (3), 4916–4926. doi:10.1021/acsnano.0c09746
  14. Simulation of light scattering in large, disordered nanostructures using a periodic T-matrix method
    Theobald, D.; Beutel, D.; Borgmann, L.; Mescher, H.; Gomard, G.; Rockstuhl, C.; Lemmer, U.
    2021. Journal of quantitative spectroscopy & radiative transfer, 272, Article no: 107802. doi:10.1016/j.jqsrt.2021.107802
  15. Bayesian Optimization With Improved Scalability and Derivative Information for Efficient Design of Nanophotonic Structures
    Garcia-Santiago, X.; Burger, S.; Rockstuhl, C.; Schneider, P.-I.
    2021. Journal of lightwave technology, 39 (1), 167–177. doi:10.1109/JLT.2020.3023450
  16. Light-trapping structures for planar solar cells inspired by transformation optics
    Dhawan, P.; Gaudig, M.; Sprafke, A.; Wehrspohn, R. B.; Rockstuhl, C.
    2021. Optics express, 29 (13), 19903–19919. doi:10.1364/OE.426712
  17. Tailored Light Scattering through Hyperuniform Disorder in Self-Organized Arrays of High-Index Nanodisks
    Piechulla, P. M.; Fuhrmann, B.; Slivina, E.; Rockstuhl, C.; Wehrspohn, R. B.; Sprafke, A. N.
    2021. Advanced Optical Materials, 9 (17), 2100186. doi:10.1002/adom.202100186
  18. Lower limits for the homogenization of periodic metamaterials made from electric dipolar scatterers
    Venkitakrishnan, R.; Höß, T.; Repän, T.; Goffi, F. Z.; Plum, M.; Rockstuhl, C.
    2021. Physical Review B, 103 (19), 195425. doi:10.1103/PhysRevB.103.195425
  19. Enhancing the optical rotation of chiral molecules using helicity preserving all-dielectric metasurfaces
    Beutel, D.; Scott, P.; Wegener, M.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2021. Applied Physics Letters, 118 (22), Art.-Nr.: 221108. doi:10.1063/5.0050411
  20. Efficient simulation of biperiodic, layered structures based on the T-matrix method
    Beutel, D.; Groner, A.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2021. Journal of the Optical Society of America B: Optical Physics, 38 (6), 1782–1791. doi:10.1364/JOSAB.419645
  21. Quantum Plasmonic Sensors
    Lee, C.; Lawrie, B.; Pooser, R.; Lee, K.-G.; Rockstuhl, C.; Tame, M.
    2021. Chemical Reviews, 121 (8), 4743–4804. doi:10.1021/acs.chemrev.0c01028
  22. Induced higher order multipolar resonances from interacting scatterers
    Perdana, N.; Rockstuhl, C.; Iskandar, A. A.
    2021. Journal of the Optical Society of America B: Optical Physics, 38 (1), 241–248. doi:10.1364/JOSAB.410860
  23. From single-particle-like to interaction-mediated plasmonic resonances in graphene nanoantennas
    Müller, M. M.; Kosik, M.; Pelc, M.; Bryant, G. W.; Ayuela, A.; Rockstuhl, C.; Słowik, K.
    2021. Journal of Applied Physics, 129 (9), Art.-Nr.: 093103. doi:10.1063/5.0038883
  24. Effects of symmetry-breaking on electromagnetic backscattering
    Abdelrahman, M. I.; Slivina, E.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2021. Scientific reports, 11 (1), Art.-Nr. 1721. doi:10.1038/s41598-020-80347-5
2020
Journal Articles
  1. Modeling Optical Materials at the Single Scatterer Level: The Transition from Homogeneous to Heterogeneous Materials
    Werdehausen, D.; Santiago, X. G.; Burger, S.; Staude, I.; Pertsch, T.; Rockstuhl, C.; Decker, M.
    2020. Advanced theory and simulations, 3 (11), Art.-Nr.:L 2000192. doi:10.1002/adts.202000192
  2. Tunable photonic devices by 3D laser printing of liquid crystal elastomers
    Woska, S.; Münchinger, A.; Beutel, D.; Blasco, E.; Hessenauer, J.; Karayel, O.; Rietz, P.; Pfleging, S.; Oberle, R.; Rockstuhl, C.; Wegener, M.; Kalt, H.
    2020. Optical materials express, 10 (11), 2928–2943. doi:10.1364/OME.402855
  3. Extreme renormalisations of dimer eigenmodes by strong light–matter coupling
    Sturges, T. J.; Repän, T.; Downing, C. A.; Rockstuhl, C.; Stobińska, M.
    2020. New journal of physics, 22 (10), Art.-Nr.: 103001. doi:10.1088/1367-2630/abb898
  4. On enhanced sensing of chiral molecules in optical cavities
    Scott, P.; Garcia-Santiago, X.; Beutel, D.; Rockstuhl, C.; Wegener, M.; Fernandez-Corbaton, I.
    2020. Applied physics reviews, 7 (4), Art.Nr. 041413. doi:10.1063/5.0025006
  5. Full-field optical coherence tomography-An educational setup for an undergraduate lab
    Pieper, K.; Latour, G.; Küchenmeister, J.; Bergmann, A.; Dengler, R.; Rockstuhl, C.
    2020. American journal of physics, 88 (12), 1132–1139. doi:10.1119/10.0001755
  6. Energy-Based Plasmonicity Index to Characterize Optical Resonances in Nanostructures
    Müller, M. M.; Kosik, M.; Pelc, M.; Bryant, G. W.; Ayuela, A.; Rockstuhl, C.; Słowik, K.
    2020. The journal of physical chemistry <Washington, DC> / C, 124 (44), 24331–24343. doi:10.1021/acs.jpcc.0c07964
  7. Boosting Light Emission from Single Hydrogen Phthalocyanine Molecules by Charging
    Rai, V.; Gerhard, L.; Sun, Q.; Holzer, C.; Repän, T.; Krstić, M.; Yang, L.; Wegener, M.; Rockstuhl, C.; Wulfhekel, W.
    2020. Nano letters, 20 (10), 7600–7605. doi:10.1021/acs.nanolett.0c03121
  8. Self-Assembled Arrays of Gold Nanorod-Decorated Dielectric Microspheres with a Magnetic Dipole Response in the Visible Range for Perfect Lensing and Cloaking Applications
    Grillo, R.; Beutel, D.; Cataldi, U.; Rockstuhl, C.; Bürgi, T.
    2020. ACS applied nano materials, 3 (6), 6108–6117. doi:10.1021/acsanm.0c01346
  9. Plasmonic Nanocrystal Arrays on Photonic Crystals with Tailored Optical Resonances
    Wang, J.; Le-The, H.; Karamanos, T.; Suryadharma, R. N. S.; Berg, A. van den; Pinkse, P. W. H.; Rockstuhl, C.; Shui, L.; Eijkel, J. C. T.; Segerink, L. I.
    2020. ACS applied materials & interfaces, 12 (33), 37657–37669. doi:10.1021/acsami.0c05596
  10. Experimental quantum polarimetry using heralded single photons
    Yoon, S.-J.; Lee, J.-S.; Rockstuhl, C.; Lee, C.; Lee, K.-G.
    2020. Metrologia, 57 (4), Art. Nr.: 045008. doi:10.1088/1681-7575/ab8801
  11. Inverse design of nanophotonic devices with structural integrity
    Augenstein, Y.; Rockstuhl, C.
    2020. ACS photonics, 7 (8), 2190–2196. doi:10.1021/acsphotonics.0c00699
  12. Influence of Co bilayers and trilayers on the plasmon-driven light emission from Cu(111) in a scanning tunneling microscope
    Edelmann, K.; Wilmes, L.; Rai, V.; Gerhard, L.; Yang, L.; Wegener, M.; Repän, T.; Rockstuhl, C.; Wulfhekel, W.
    2020. Physical review / B, 101 (20), Art.Nr. 205405. doi:10.1103/PhysRevB.101.205405
  13. Minimalist Mie coefficient model
    Rahimzadegan, A.; Alaee, R.; Rockstuhl, C.; Boyd, R. W.
    2020. Optics express, 28 (11), 16511–16525. doi:10.1364/OE.390331
  14. Towards more general constitutive relations for metamaterials: A checklist for consistent formulations
    Goffi, F. Z.; Mnasri, K.; Plum, M.; Rockstuhl, C.; Khrabustovskyi, A.
    2020. Physical review / B, 101 (19), Art.Nr.: 195411. doi:10.1103/PhysRevB.101.195411
  15. Computation of Electromagnetic Properties of Molecular Ensembles
    Fernandez-Corbaton, I.; Beutel, D.; Rockstuhl, C.; Pausch, A.; Klopper, W.
    2020. ChemPhysChem, 21 (9), 878–887. doi:10.1002/cphc.202000072
  16. Interaction of atomic systems with quantum vacuum beyond electric dipole approximation
    Kosik, M.; Burlayenko, O.; Rockstuhl, C.; Fernandez-Corbaton, I.; Słowik, K.
    2020. Scientific reports, 10 (1), Article: 5879. doi:10.1038/s41598-020-62629-0
  17. Helicity-Preserving Optical Cavity Modes for Enhanced Sensing of Chiral Molecules
    Feis, J.; Beutel, D.; Köpfler, J.; Garcia-Santiago, X.; Rockstuhl, C.; Wegener, M.; Fernandez-Corbaton, I.
    2020. Physical review letters, 124 (3), Article: 033201. doi:10.1103/PhysRevLett.124.033201
  18. Superconducting-Nanowire Single-Photon Spectrometer Exploiting Cascaded Photonic Crystal Cavities
    Yun, Y.; Vetter, A.; Stegmueller, R.; Ferrari, S.; Pernice, W. H. P.; Rockstuhl, C.; Lee, C.
    2020. Physical review applied, 13 (1), Article No.014061. doi:10.1103/PhysRevApplied.13.014061
  19. Merging Top‐Down and Bottom‐Up Approaches to Fabricate Artificial Photonic Nanomaterials with a Deterministic Electric and Magnetic Response
    Dietrich, K.; Zilk, M.; Steglich, M.; Siefke, T.; Hübner, U.; Pertsch, T.; Rockstuhl, C.; Tünnermann, A.; Kley, E.-B.
    2020. Advanced functional materials, 30 (3), Article no: 1905722. doi:10.1002/adfm.201905722
2019
Journal Articles
  1. Wireless power transfer experiments for a high-school physics lab
    Bergmann, A.; Dürr, E.; Rockstuhl, C.
    2019. Physics Education, 54 (5), Artk.Nr.: 055016. doi:10.1088/1361-6552/ab2c2c
  2. Using states with a large photon number variance to increase quantum Fisher information in single-mode phase estimation
    Lee, C.; Oh, C.; Jeong, H.; Rockstuhl, C.; Lee, S.-Y.
    2019. Journal of Physics Communications, 3 (11), 115008. doi:10.1088/2399-6528/ab524a
  3. Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction
    Schneider, P.-I.; Garcia Santiago, X.; Soltwisch, V.; Hammerschmidt, M.; Burger, S.; Rockstuhl, C.
    2019. ACS photonics, 6 (11), 2726–2733. doi:10.1021/acsphotonics.9b00706
  4. Enhancement of and interference among higher order multipole transitions in molecules near a plasmonic nanoantenna
    Rusak, E.; Straubel, J.; Gładysz, P.; Göddel, M.; Kędziorski, A.; Kühn, M.; Weigend, F.; Rockstuhl, C.; Słowik, K.
    2019. Nature Communications, 10 (1), Art. Nr.: 5775. doi:10.1038/s41467-019-13748-4
  5. LIGO analogy lab—A set of undergraduate lab experiments to demonstrate some principles of gravitational wave detection
    Ugolini, D.; Rafferty, H.; Winter, M.; Rockstuhl, C.; Bergmann, A.
    2019. American journal of physics, 87 (1), 44–56. doi:10.1119/1.5066567
  6. Beyond dipolar Huygens’ metasurfaces for full-phase coverage and unity transmittance
    Rahimzadegan, A.; Arslan, D.; Dams, D.; Groner, A.; Garcia-Santiago, X.; Alaee, R.; Fernandez-Corbaton, I.; Pertsch, T.; Staude, I.; Rockstuhl, C.
    2019. Nanophotonics, 9 (1), 75–82. doi:10.1515/nanoph-2019-0239
  7. Exact Multipolar Decompositions with Applications in Nanophotonics
    Alaee, R.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2019. Advanced optical materials, 7 (1), Art. Nr.: 1800783. doi:10.1002/adom.201800783
  8. Decomposition of scattered electromagnetic fields into vector spherical wave functions on surfaces with general shapes
    Santiago, X. G.; Hammerschmidt, M.; Burger, S.; Rockstuhl, C.; Fernandez-Corbaton, I.; Zschiedrich, L.
    2019. Physical review / B, 99 (4), Art. Nr.: 045406. doi:10.1103/PhysRevB.99.045406
  9. Insights into Backscattering Suppression in Solar Cells from the Helicity-Preservation Point of View
    Slivina, E.; Abass, A.; Bätzner, D.; Strahm, B.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2019. Physical review applied, 12 (5), Art.-Nr. 054003. doi:10.1103/PhysRevApplied.12.054003
  10. Manipulation of Magnetic Dipole Emission from Eu 3+ with Mie-Resonant Dielectric Metasurfaces
    Vaskin, A.; Mashhadi, S.; Steinert, M.; Chong, K. E.; Keene, D.; Nanz, S.; Abass, A.; Rusak, E.; Choi, D.-Y.; Fernandez-Corbaton, I.; Pertsch, T.; Rockstuhl, C.; Noginov, M. A.; Kivshar, Y. S.; Neshev, D. N.; Noginova, N.; Staude, I.
    2019. Nano letters, 19 (2), 1015–1022. doi:10.1021/acs.nanolett.8b04268
  11. Corrigendum: ’Using a pseudo-thermal light source to teach spatial coherence’ (2018 Eur. J. Phys. 39 045303)
    Pieper, K.; Bergmann, A.; Dengler, R.; Rockstuhl, C.
    2019. European journal of physics, 40 (2), Art. Nr.: 029501. doi:10.1088/1361-6404/aaf2e5
  12. Computational rule-based approach for corner correction of non-Manhattan geometries in mask aligner photolithography
    Vetter, A.; Yan, C.; Kirner, R.; Scharf, T.; Noell, W.; Voelkel, R.; Rockstuhl, C.
    2019. Optics express, 27 (22), 32523. doi:10.1364/OE.27.032523
  13. Analysis of the detection response of waveguide-integrated superconducting nanowire single-photon detectors at high count rate
    Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lee, C.; Rockstuhl, C.; Semenov, A.; Gol’tsman, G.; Pernice, W.
    2019. Applied physics letters, 115 (10), Article: 101104. doi:10.1063/1.5113652
  14. Perturbing beyond the shallow amplitude regime: Green’s function scattering formalism with Bloch modes
    Abass, A.; Martins, A.; Nanz, S.; Borges, B.-H. V.; Martins, E. R.; Rockstuhl, C.
    2019. Journal of the Optical Society of America / B, 36 (8), F89-F98. doi:10.1364/JOSAB.36.000F89
  15. Visualizing and manipulating the spatial and temporal coherence of light with an adjustable light source in an undergraduate experiment
    Pieper, K.; Bergmann, A.; Dengler, R.; Rockstuhl, C.
    2019. European journal of physics, 40 (5), Article no: 055302. doi:10.1088/1361-6404/ab3035
  16. Optimal measurements for quantum fidelity between Gaussian states and its relevance to quantum metrology
    Oh, C.; Lee, C.; Banchi, L.; Lee, S.-Y.; Rockstuhl, C.; Jeong, H.
    2019. Physical review / A, 100, Art.-Nr.: 012323. doi:10.1103/PhysRevA.100.012323
  17. High-resolution interference microscopy with spectral resolution for the characterization of individual particles and self-assembled meta-atoms
    Symeonidis, M.; Suryadharma, R. N. S.; Grillo, R.; Vetter, A.; Rockstuhl, C.; Bürgi, T.; Scharf, T.
    2019. Optics express, 27 (15), 20990–21003. doi:10.1364/OE.27.020990
  18. Retrieving effective material parameters of metamaterials characterized by nonlocal constitutive relations
    Mnasri, K.; Khrabustovskyi, A.; Plum, M.; Rockstuhl, C.
    2019. Physical review / B, 99 (3), 035442. doi:10.1103/PhysRevB.99.035442
  19. Homogenization of wire media with a general purpose nonlocal constitutive relation
    Mnasri, K.; Goffi, F. Z.; Plum, M.; Rockstuhl, C.
    2019. Journal of the Optical Society of America / B, 36 (8), F99-F108. doi:10.1364/JOSAB.36.000F99
  20. Photon recycling in nanopatterned perovskite thin-films for photovoltaic applications
    Nanz, S.; Schmager, R.; Abebe, M. G.; Willig, C.; Wickberg, A.; Abass, A.; Gomard, G.; Wegener, M.; Paetzold, U. W.; Rockstuhl, C.
    2019. APL photonics, 4 (7), Art.Nr.: 076104. doi:10.1063/1.5094579
  21. New Twists of 3D Chiral Metamaterials
    Fernandez-Corbaton, I.; Rockstuhl, C.; Ziemke, P.; Gumbsch, P.; Albiez, A.; Schwaiger, R.; Frenzel, T.; Kadic, M.; Wegener, M.
    2019. Advanced materials, 31 (26), Art.Nr. 1807742. doi:10.1002/adma.201807742
  22. Quantifying Fano properties in self-assembled metamaterials
    Suryadharma, R. N. S.; Rockstuhl, C.; Martin, O. J. F.; Fernandez-Corbaton, I.
    2019. Physical review / B, 99 (19), Art.Nr. 195416. doi:10.1103/PhysRevB.99.195416
  23. Second-Harmonic Generation by 3D Laminate Metacrystals
    Wickberg, A.; Abass, A.; Hsiao, H.-H.; Rockstuhl, C.; Wegener, M.
    2019. Advanced optical materials, Art.-Nr.: 1801235. doi:10.1002/adom.201801235
  24. Wireless coils based on resonant and nonresonant coupled-wire structure for small animal multinuclear imaging
    Vergara Gomez, T. S.; Dubois, M.; Glybovski, S.; Larrat, B.; Rosny, J. de; Rockstuhl, C.; Bernard, M.; Abdeddaim, R.; Enoch, S.; Kober, F.
    2019. NMR in biomedicine, 32 (5), e4079. doi:10.1002/nbm.4079
  25. Achiral, Helicity Preserving, and Resonant Structures for Enhanced Sensing of Chiral Molecules
    Graf, F.; Feis, J.; Garcia-Santiago, X.; Wegener, M.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2019. ACS photonics, 6 (2), 482–491. doi:10.1021/acsphotonics.8b01454
  26. Analytical and numerical analysis of linear and nonlinear properties of an rf-SQUID based metasurface
    Müller, M. M.; Maier, B.; Rockstuhl, C.; Hochbruck, M.
    2019. Physical review / B, 99 (7), Art.-Nr.: 075401. doi:10.1103/PhysRevB.99.075401
  27. Optimal Gaussian measurements for phase estimation in single-mode Gaussian metrology
    Oh, C.; Lee, C.; Rockstuhl, C.; Jeong, H.; Kim, J.; Nha, H.; Lee, S.-Y.
    2019. npj Quantum information, 5 (1), Article no 10. doi:10.1038/s41534-019-0124-4
  28. Experimental demonstration of spectrally broadband Huygens sources using low-index spheres
    Abdelrahman, M. I.; Saleh, H.; Fernandez-Corbaton, I.; Gralak, B.; Geffrin, J.-M.; Rockstuhl, C.
    2019. APL photonics, 4 (2), Article: 020802. doi:10.1063/1.5080980
  29. Disorder-Induced Phase Transitions in the Transmission of Dielectric Metasurfaces
    Rahimzadegan, A.; Arslan, D.; Suryadharma, R. N. S.; Fasold, S.; Falkner, M.; Pertsch, T.; Staude, I.; Rockstuhl, C.
    2019. Physical review letters, 122 (1), Art. Nr.: 015702. doi:10.1103/PhysRevLett.122.015702
2018
Journal Articles
  1. Multiple self-healing Bloch surface wave beams generated by a two-dimensional fraxicon
    Kim, M.-S.; Vetter, A.; Rockstuhl, C.; Lahijani, B. V.; Häyrinen, M.; Kuittinen, M.; Roussey, M.; Herzig, H. P.
    2018. Communications Physics, 1 (1), 63. doi:10.1038/s42005-018-0065-9
  2. Fast and reliable method to estimate losses of single-mode waveguides with an arbitrary 2D trajectory
    Negredo, F.; Blaicher, M.; Nesic, A.; Kraft, P.; Ott, J.; Dörfler, W.; Koos, C.; Rockstuhl, C.
    2018. Journal of the Optical Society of America / A, 35 (6), 1063–1073. doi:10.1364/JOSAA.35.001063
  3. Identification of Dielectric, Plasmonic, and Hybrid Modes in Metal-Coated Whispering-Gallery-Mode Resonators
    Klusmann, C.; Oppermann, J.; Forster, P.; Rockstuhl, C.; Kalt, H.
    2018. ACS photonics, 5 (6), 2365–2373. doi:10.1021/acsphotonics.8b00160
  4. Achieving Highly Stable, Reversibly Reconfigurable Plasmonic Nanocrystal Superlattices through the Use of Semifluorinated Surface Ligands
    Bagiński, M.; Tomczyk, E.; Vetter, A.; Suryadharma, R. N. S.; Rockstuhl, C.; Lewandowski, W.
    2018. Chemistry of materials, 30 (22), 8201–8210. doi:10.1021/acs.chemmater.8b03331
  5. Light-Trapping Front Textures for Solar Cells from Tailored Mixtures of Nanospheres: A Numerical Study
    Nanz, S.; Abass, A.; Piechulla, P. M.; Sprafke, A.; Wehrspohn, R. B.; Rockstuhl, C.
    2018. Physica status solidi / A, 215 (24), Art.-Nr.: 1800699. doi:10.1002/pssa.201800699
  6. Inverse photonic design of functional elements that focus Bloch surface waves
    Augenstein, Y.; Vetter, A.; Lahijani, B. V.; Herzig, H. P.; Rockstuhl, C.; Kim, M.-S.
    2018. Light, 7 (1), Article No 104. doi:10.1038/s41377-018-0106-x
  7. Theory of optical forces on small particles by multiple plane waves
    Mobini, E.; Rahimzadegan, A.; Rockstuhl, C.; Alaee, R.
    2018. Journal of applied physics, 124 (17), Art. Nr.: 173102. doi:10.1063/1.5046154
  8. Quantum plasmonic sensing using single photons
    Lee, J.-S.; Yoon, S.-J.; Rah, H.; Tame, M.; Rockstuhl, C.; Song, S. H.; Lee, C.; Lee, K.-G.
    2018. Optics express, 26 (22), 29272. doi:10.1364/OE.26.029272
  9. Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing
    Chen, Y.; Lee, C.; Lu, L.; Liu, D.; Wu, Y.-K.; Feng, L.-T.; Li, M.; Rockstuhl, C.; Guo, G.-P.; Guo, G.-C.; Tame, M.; Ren, X.-F.
    2018. Optica, 5 (10), 1229. doi:10.1364/OPTICA.5.001229
  10. Rigorous wave-optical treatment of photon recycling in thermodynamics of photovoltaics: Perovskite thin-film solar cells
    Abebe, M. G.; Abass, A.; Gomard, G.; Zschiedrich, L.; Lemmer, U.; Richards, B. S.; Rockstuhl, C.; Paetzold, U. W.
    2018. Physical review / B, 98 (7), Article: 075141. doi:10.1103/PhysRevB.98.075141
  11. Surface plasmon polaritons sustained at the interface of a nonlocal metamaterial
    Feis, J.; Mnasri, K.; Khrabustovskyi, A.; Stohrer, C.; Plum, M.; Rockstuhl, C.
    2018. Physical review / B, 98 (11), Article No.115409. doi:10.1103/PhysRevB.98.115409
  12. Printing sub-micron structures using Talbot mask-aligner lithography with a 193 nm CW laser light source
    Vetter, A.; Kirner, R.; Opalevs, D.; Scholz, M.; Leisching, P.; Scharf, T.; Noell, W.; Rockstuhl, C.; Voelkel, R.
    2018. Optics express, 26 (17), 22218–22233. doi:10.1364/OE.26.022218
  13. Formation of nanocrystalline graphene on germanium
    Yekani, R.; Rusak, E.; Riaz, A.; Felten, A.; Breitung, B.; Dehm, S.; Perera, D.; Rohrer, J.; Rockstuhl, C.; Krupke, R.
    2018. Nanoscale, 10 (25), 12156–12162. doi:10.1039/c8nr01261j
  14. Beyond local effective material properties for metamaterials
    Mnasri, K.; Khrabustovskyi, A.; Stohrer, C.; Plum, M.; Rockstuhl, C.
    2018. Physical review / B, 97 (7), Art. Nr.: 075439. doi:10.1103/PhysRevB.97.075439
  15. Normalization approach for scattering modes in classical and quantum electrodynamics
    Oppermann, J.; Straubel, J.; Fernandez-Corbaton, I.; Rockstuhl, C.
    2018. Physical review / A, 97 (5), 052131. doi:10.1103/PhysRevA.97.052131
  16. Core-Shell Particles as Building Blocks for Systems with High Duality Symmetry
    Rahimzadegan, A.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2018. Physical review applied, 9 (5), 054051. doi:10.1103/PhysRevApplied.9.054051
  17. Fabrication of Nearly-Hyperuniform Substrates by Tailored Disorder for Photonic Applications
    Piechulla, P. M.; Muehlenbein, L.; Wehrspohn, R. B.; Nanz, S.; Abass, A.; Rockstuhl, C.; Sprafke, A.
    2018. Advanced optical materials, 6 (7), Art. Nr.: 1701272. doi:10.1002/adom.201701272
  18. Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity
    Münzberg, J.; Vetter, A.; Beutel, F.; Hartmann, W.; Ferrari, S.; Pernice, W. H. P.; Rockstuhl, C.
    2018. Optica, 5 (5), 658–665. doi:10.1364/OPTICA.5.000658
  19. Using a pseudo-thermal light source to teach spatial coherence
    Pieper, K.; Bergmann, A.; Dengler, R.; Rockstuhl, C.
    2018. European journal of physics, 39 (4), 045303. doi:10.1088/1361-6404/aaba03
  20. Quantum Optical Realization of Arbitrary Linear Transformations Allowing for Loss and Gain
    Tischler, N.; Rockstuhl, C.; Słowik, K.
    2018. Physical review / X, 8 (2), 021017. doi:10.1103/PhysRevX.8.021017
  21. Correction: Computing the T-matrix of a scattering object with multiple plane wave illuminations
    Fruhnert, M.; Fernandez-Corbaton, I.; Yannopapas, V.; Rockstuhl, C.
    2018. Beilstein journal of nanotechnology, 9, 953. doi:10.3762/bjnano.9.88
  22. Shape design of a reflecting surface using Bayesian Optimization
    Garcia-Santiago, X.; Schneider, P. I.; Rockstuhl, C.; Burger, S.
    2018. Journal of physics / Conference Series, 963 (1), Art.Nr. 012003. doi:10.1088/1742-6596/963/1/012003
  23. Predicting Observable Quantities of Self-Assembled Metamaterials from the T-Matrix of Its Constituting Meta-Atom
    Suryadharma, R.; Rockstuhl, C.
    2018. Materials, 11 (2), Art.Nr. 213. doi:10.3390/ma11020213
  24. Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm
    Kirner, R.; Vetter, A.; Opalevs, D.; Gilfert, C.; Scholz, M.; Leisching, P.; Scharf, T.; Noell, W.; Rockstuhl, C.; Voelkel, R.
    2018. Optics express, 26 (2), 730–743. doi:10.1364/OE.26.000730
  25. Quantum Description of Radiative Decay in Optical Cavities
    Oppermann, J.; Straubel, J.; Słowik, K.; Rockstuhl, C.
    2018. Physical review / A, 97 (1), Art.Nr. 013809. doi:10.1103/PhysRevA.97.013809
  26. Strategy for tailoring the size distribution of nanospheres to optimize rough backreflectors of solar cells
    Nanz, S.; Abass, A.; Piechulla, P. M.; Sprafke, A.; Wehrspohn, R. B.; Rockstuhl, C.
    2018. Optics express, 26 (2), A111-A123. doi:10.1364/OE.26.00A111
  27. An electromagnetic multipole expansion beyond the long-wavelength approximation
    Alaee, R.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2018. Optics communications, 407, 17–21. doi:10.1016/j.optcom.2017.08.064
2017
Journal Articles
  1. Theory of metasurface based perfect absorbers
    Alaee, R.; Albooyeh, M.; Rockstuhl, C.
    2017. Journal of physics / D, 50 (50), Art.Nr.: 503002. doi:10.1088/1361-6463/aa94a8
  2. Enhanced Directional Emission from Monolayer WSe₂ Integrated onto a Multiresonant Silicon-Based Photonic Structure
    Chen, H.; Nanz, S.; Abass, A.; Yan, J.; Gao, T.; Choi, D.-Y.; Kivshar, Y. S.; Rockstuhl, C.; Neshev, D. N.
    2017. ACS photonics, 4 (12), 3031–3038. doi:10.1021/acsphotonics.7b00550
  3. A Green’s function based analytical method for forward and inverse modeling of quasi-periodic nanostructured surfaces
    Abass, A.; Zilk, M.; Nanz, S.; Fasold, S.; Ehrhardt, S.; Pertsch, T.; Rockstuhl, C.
    2017. Journal of applied physics, 122 (18), Art.Nr.: 183103. doi:10.1063/1.4998541
  4. Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres
    Ismail Abdelrahman, M.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2017. Scientific reports, 7 (1), Art.Nr. 14762. doi:10.1038/s41598-017-15192-0
  5. Measuring the electromagnetic chirality of 2D arrays under normal illumination
    Garcia-Santiago, X.; Burger, S.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2017. Optics letters, 42 (20), 4075–4078. doi:10.1364/OL.42.004075
  6. Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors
    Lee, J.-S.; Huynh, T.; Lee, S.-Y.; Lee, K.-G.; Lee, J.; Tame, M.; Rockstuhl, C.; Lee, C.
    2017. Physical review / A, 96 (3), Art.Nr.: 033833. doi:10.1103/PhysRevA.96.033833
  7. On the dynamic toroidal multipoles from localized electric current distributions
    Fernandez-Corbaton, I.; Nanz, S.; Rockstuhl, C.
    2017. Scientific reports, 7 (1), Art. Nr.: 7527. doi:10.1038/s41598-017-07474-4
  8. Studying plasmonic resonance modes of hierarchical self-assembled meta-atoms based on their transfer matrix
    Suryadharma, R. N. S.; Fruhnert, M.; Fernandez-Corbaton, I.; Rockstuhl, C.
    2017. Physical review / B, 96 (4), Art. Nr. 045406. doi:10.1103/PhysRevB.96.045406
  9. Dual-SNOM investigations of multimode interference in plasmonic strip waveguides
    Klein, A. E.; Janunts, N.; Schmidt, S.; Bin Hasan, S.; Etrich, C.; Fasold, S.; Kaiser, T.; Rockstuhl, C.; Pertsch, T.
    2017. Nanoscale, 9 (20), 6695–6702. doi:10.1039/c6nr06561a
  10. Hybridizing whispering gallery modes and plasmonic resonances in a photonic metadevice for biosensing applications
    Klusmann, C.; Suryadharma, R. N. S.; Oppermann, J.; Rockstuhl, C.; Kalt, H.
    2017. Journal of the Optical Society of America / B, 34 (7), D46-D55. doi:10.1364/JOSAB.34.000D46
  11. Subwavelength Focusing of Bloch Surface Waves
    Kim, M.-S.; Vosoughi Lahijani, B.; Descharmes, N.; Straubel, J.; Negredo, F.; Rockstuhl, C.; Häyrinen, M.; Kuittinen, M.; Roussey, M.; Herzig, H. P.
    2017. ACS photonics, 4 (6), 1477–1483. doi:10.1021/acsphotonics.7b00245
  12. Entangled light from bimodal optical nanoantennas
    Straubel, J.; Sarniak, R.; Rockstuhl, C.; Słowik, K.
    2017. Physical review / B, 95 (8), Art. Nr.: 085421. doi:10.1103/PhysRevB.95.085421
  13. Unified theory to describe and engineer conservation laws in light-matter interactions
    Fernandez-Corbaton, I.; Rockstuhl, C.
    2017. Physical review / A, 95 (5), Art. Nr. 053829. doi:10.1103/PhysRevA.95.053829
  14. Singular-value decomposition for electromagnetic-scattering analysis
    Suryadharma, R. N. S.; Fruhnert, M.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2017. Physical review / A, 95 (5), Art. Nr. 053834. doi:10.1103/PhysRevA.95.053834
  15. Hot-spot relaxation time current dependence in niobium nitride waveguide-integrated superconducting nanowire single-photon detectors
    Ferrari, S.; Kovalyuk, V.; Hartmann, W.; Vetter, A.; Kahl, O.; Lee, C.; Korneev, A.; Rockstuhl, C.; Gol’tsman, G.; Pernice, W.
    2017. Optics express, 25 (8), 8739–8750. doi:10.1364/OE.25.008739
  16. Computing the T-matrix of a scattering object with multiple plane wave illuminations
    Fruhnert, M.; Fernandez-Corbaton, I.; Yannopapas, V.; Rockstuhl, C.
    2017. Beilstein journal of nanotechnology, 8 (1), 614–626. doi:10.3762/bjnano.8.66
  17. Optical alignment of oval graphene flakes
    Mobini, E.; Rahimzadegan, A.; Alaee, R.; Rockstuhl, C.
    2017. Optics letters, 42 (6), 1039–1042. doi:10.1364/OL.42.001039
  18. Fundamental limits of optical force and torque
    Rahimzadegan, A.; Alaee, R.; Fernandez-Corbaton, I.; Rockstuhl, C.
    2017. Physical review / B, 95 (3), 035106. doi:10.1103/PhysRevB.95.035106
  19. A simple DPSS laser setup and experiments for undergraduates
    Bergmann, A.; Kircher, S.; Setzler, D.; Gerharz, M.; Rockstuhl, C.
    2017. European journal of physics, 38 (1), Art. Nr.: 014004. doi:10.1088/0143-0807/38/1/014004
2016
Journal Articles
  1. Purely bianisotropic scatterers
    Albooyeh, M.; Asadchy, V. S.; Alaee, R.; Hashemi, S. M.; Yazdi, M.; Mirmoosa, M. S.; Rockstuhl, C.; Simovski, C. R.; Tretyakov, S. A.
    2016. Physical review / B, 94 (24), Art. Nr.: 245428. doi:10.1103/PhysRevB.94.245428
  2. Sub-Poisson-binomial light
    Lee, C.; Ferrari, S.; Pernice, W. H. P.; Rockstuhl, C.
    2016. Physical review / A, 94 (5), 053844. doi:10.1103/PhysRevA.94.053844
  3. Transverse multipolar light-matter couplings in evanescent waves
    Fernandez-Corbaton, I.; Zambrana-Puyalto, X.; Bonod, N.; Rockstuhl, C.
    2016. Physical review / A, 94 (5), 053822. doi:10.1103/PhysRevA.94.053822
  4. Cavity-Enhanced and Ultrafast Superconducting Single-Photon Detectors
    Vetter, A.; Ferrari, S.; Rath, P.; Alaee, R.; Kahl, O.; Kovalyuk, V.; Diewald, S.; Goltsman, G. N.; Korneev, A.; Rockstuhl, C.; Pernice, W. H. P.
    2016. Nano letters, 16 (11), 7085–7092. doi:10.1021/acs.nanolett.6b03344
  5. Surface phonon–polaritons: To scatter or not to scatter
    Staude, I.; Rockstuhl, C.
    2016. Nature materials, 15 (8), 821–822. doi:10.1038/nmat4713
  6. Bottom-Up Fabrication of Hybrid Plasmonic Sensors: Gold-Capped Hydrogel Microspheres Embedded in Periodic Metal Hole Arrays
    Weiler, M.; Menzel, C.; Pertsch, T.; Alaee, R.; Rockstuhl, C.; Pacholski, C.
    2016. ACS applied materials & interfaces, 8 (39), 26392–26399. doi:10.1021/acsami.6b08636
  7. Optically assisted trapping with high-permittivity dielectric rings: Towards optical aerosol filtration
    Alaee, R.; Kadic, M.; Rockstuhl, C.; Passian, A.
    2016. Applied physics letters, 109 (14), 141102. doi:10.1063/1.4963862
  8. Phase-change material-based nanoantennas with tunable radiation patterns
    Alaee, R.; Albooyeh, M.; Tretyakov, S.; Rockstuhl, C.
    2016. Optics letters, 41 (17), 4099–4102. doi:10.1364/OL.41.004099
  9. Fully integrated quantum photonic circuit with an electrically driven light source
    Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M. M.; Gol’tsman, G.; Korneev, A.; Rockstuhl, C.; Krupke, R.; Pernice, W. H. P.
    2016. Nature photonics. doi:10.1038/nphoton.2016.178
  10. Optical force and torque on dipolar dual chiral particles
    Rahimzadegan, A.; Fruhnert, M.; Alaee, R.; Fernandez-Corbaton, I.; Rockstuhl, C.
    2016. Physical review / B, 94 (12), Art. Nr.: 125123. doi:10.1103/PhysRevB.94.125123
  11. Broadband Anti-Reflective Coating Based on Plasmonic Nanocomposite
    Hedayati, M. K.; Abdelaziz, M.; Etrich, C.; Homaeigohar, S.; Rockstuhl, C.; Elbahri, M.
    2016. Materials, 9 (8), Art.Nr.:636. doi:10.3390/ma9080636
  12. Insights into directional scattering : from coupled dipoles to asymmetric dimer nanoantennas
    Abass, A.; Gutsche, P.; Maes, B.; Rockstuhl, C.; Martins, E. R.
    2016. Optics express, 24 (17), 19638–19650. doi:10.1364/OE.24.019638
  13. Objects of Maximum Electromagnetic Chirality
    Fernandez-Corbaton, I.; Fruhnert, M.; Rockstuhl, C.
    2016. Physical review / X, 6 (3), Art.Nr.:031013. doi:10.1103/PhysRevX.6.031013
  14. Efficient mode conversion in an optical nanoantenna mediated by quantum emitters
    Straubel, J.; Filter, R.; Rockstuhl, C.; Słowik, K.
    2016. Optics letters, 41 (10), 2294–2297. doi:10.1364/OL.41.002294
  15. Tunable scattering cancellation cloak with plasmonic ellipsoids in the visible
    Fruhnert, M.; Monti, A.; Fernandez-Corbaton, I.; Alù, A.; Toscano, A.; Bilotti, F.; Rockstuhl, C.
    2016. Physical Review B, 93 (24), 245127. doi:10.1103/PhysRevB.93.245127
  16. Quantum Plasmonic Sensing: Beyond the Shot-Noise and Diffraction Limit
    Lee, C.; Dieleman, F.; Lee, J.; Rockstuhl, C.; Maier, S. A.; Tame, M.
    2016. ACS Photonics, 3 (6), 992–999. doi:10.1021/acsphotonics.6b00082
  17. Experimental realisation of all-dielectric bianisotropic metasurfaces
    Odit, M. A.; Kapitanova, P. V.; Belov, P. A.; Alaee, R.; Rockstuhl, C.; Kivshar, Y. S.
    2016. Applied Physics Letters, 108 (22), Art.Nr.:221903. doi:10.1063/1.4953023
  18. Plasmonic nanoantenna based triggered single-photon source
    Straubel, J.; Filter, R.; Rockstuhl, C.; Słowik, K.
    2016. Physical review / B, 93 (19), Art.Nr.: 195412. doi:10.1103/PhysRevB.93.195412
  19. Enhancement of second-harmonic generation in nonlinear nanolaminate metamaterials by nanophotonic resonances
    Hsiao, H. H.; Abass, A.; Fischer, J.; Alaee, R.; Wickberg, A.; Wegener, M.; Rockstuhl, C.
    2016. Optics Express, 24 (9), 9651–9659. doi:10.1364/OE.24.009651
  20. Refraction limit of miniaturized optical systems: A ball-lens example
    Kim, M.-S.; Scharf, T.; Mühlig, S.; Fruhnert, M.; Rockstuhl, C.; Bitterli, R.; Noell, W.; Voelkel, R.; Herzig, H. P.
    2016. Optics Express, 24 (7), 6996–7005. doi:10.1364/OE.24.006996
  21. Characterization of a circular optical nanoantenna by nonlinear photoemission electron microscopy
    Kaiser, T.; Falkner, M.; Qi, J.; Klein, A.; Steinert, M.; Menzel, C.; Rockstuhl, C.; Pertsch, T.
    2016. Applied Physics B: Lasers and Optics, 122 (3), 53. doi:10.1007/s00340-015-6312-9
  22. Multipolar Coupling in Hybrid Metal-Dielectric Metasurfaces
    Guo, R.; Rusak, E.; Staude, I.; Dominguez, J.; Decker, M.; Rockstuhl, C.; Brener, I.; Neshev, D. N.; Kivshar, Y. S.
    2016. ACS Photonics, 3 (3), 349–353. doi:10.1021/acsphotonics.6b00012
  23. Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy
    Schmidt, S.; Klein, A. E.; Paul, T.; Gross, H.; Diziain, S.; Steinert, M.; Assafrao, A. C.; Pertsch, T.; Urbach, H. P.; Rockstuhl, C.
    2016. Optics Express, 24 (4), 4128–4142. doi:10.1364/OE.24.004128
  24. Shape manipulation of ion irradiated Ag nanoparticles embedded in lithium niobate
    Wolf, S.; Rensberg, J.; Johannes, A.; Thomae, R.; Smit, F.; Neveling, R.; Moodley, M.; Bierschenk, T.; Rodriguez, M.; Afra, B.; Hasan, S. B.; Rockstuhl, C.; Ridgway, M.; Bharuth-Ram, K.; Ronning, C.
    2016. Nanotechnology, 27 (14), 145202. doi:10.1088/0957-4484/27/14/145202
  25. Quantitative and Direct Near-Field Analysis of Plasmonic-Induced Transparency and the Observation of a Plasmonic Breathing Mode
    Khunsin, W.; Dorfmüller, J.; Esslinger, M.; Vogelgesang, R.; Rockstuhl, C.; Etrich, C.; Kern, K.
    2016. ACS Nano, 10 (2), 2214–2224. doi:10.1021/acsnano.5b06768
  26. Nonradiative and Radiative Resonances in Coupled Metamolecules
    Cong, L.; Xu, N.; Chowdhury, D. R.; Manjappa, M.; Rockstuhl, C.; Zhang, W.; Singh, R.
    2016. Advanced Optical Materials, 4 (2), 252–258. doi:10.1002/adom.201500557
  27. Manipulation of photoluminescence of two-dimensional MoSe₂ by gold nanoantennas
    Chen, H.; Yang, J.; Rusak, E.; Straubel, J.; Guo, R.; Myint, Y. W.; Pei, J.; Decker, M.; Staude, I.; Rockstuhl, C.; Lu, Y.; Kivshar, Y. S.; Neshev, D.
    2016. Scientific reports, 6, Art.Nr.: 22296. doi:10.1038/srep22296
2015
Book Chapters
  1. Randomly Textured Surfaces
    Rockstuhl, C.; Fahr, S.; Lederer, F.; Bittkau, K.; Beckers, T.; Ermes, M.; Carius, R.
    2015. Photon Management in Solar Cells. Ed.: R. Wehrspohn, 91–116, Wiley-VCH Verlag
  2. Light-Trapping in Solar Cells by Directionally Selective Filters
    Ulbrich, C.; Peters, M.; Fahr, S.; Üpping, J.; Kirchartz, T.; Rockstuhl, C.; Goldschmidt, J. C.; Gerber, A.; Lederer, F.; Wehrspohn, R. B.; Bläsi, B.; Rau, U.
    2015. Photon Management in Solar Cells. Ed.: R. Wehrspohn, 183–208, Wiley-VCH Verlag. doi:10.1002/9783527665662.ch7
  3. Rear Side Diffractive Gratings for Silicon Wafer Solar Cells
    Peters, M.; Hauser, H.; Bläsi, B.; Kroll, M.; Helgert, C.; Fahr, S.; Wiesendanger, S.; Rockstuhl, C.; Kirchartz, T.; Rau, U.; Mellor, A.; Steidl, L.; Zentel, R.
    2015. Photon Management in Solar Cells. Ed.: R. Wehrspohn, 49–90, Wiley-VCH Verlag. doi:10.1002/9783527665662.ch3
Journal Articles
  1. Fluorescence enhancement in large-scale self-assembled gold nanoparticle double arrays
    Chekini, M.; Filter, R.; Bierwagen, J.; Cunningham, A.; Rockstuhl, C.; Bürgi, T.
    2015. Journal of Applied Physics, 118 (23), 233107/1–10. doi:10.1063/1.4938025
  2. All-dielectric reciprocal bianisotropic nanoparticles
    Alaee, R.; Albooyeh, M.; Rahimzadegan, A.; Mirmoosa, M. S.; Kivshar, Y. S.; Rockstuhl, C.
    2015. Physical Review B - Condensed Matter and Materials Physics, 92 (24), 245130. doi:10.1103/PhysRevB.92.245130
  3. Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes
    Schumann, M. F.; Wiesendanger, S.; Goldschmidt, J. C.; Bläsi, B.; Bittkau, K.; Paetzold, U. W.; Sprafke, A.; Wehrspohn, R. B.; Rockstuhl, C.; Wegener, M.
    2015. Optica, 2, 850–853. doi:10.1364/OPTICA.2.000850
  4. Exact dipolar moments of a localized electric current distribution
    Fernandez-Corbaton, I.; Nanz, S.; Alaee, R.; Rockstuhl, C.
    2015. Optics Express, 23 (26), 33044–33064. doi:10.1364/OE.23.033044
  5. Single-pass and omniangle light extraction from light-emitting diodes using transformation optics
    Schumann, M. F.; Abass, A.; Gomard, G.; Wiesendanger, S.; Lemmer, U.; Wegener, M.; Rockstuhl, C.
    2015. Optics letters, 40 (23), 5626–5629. doi:10.1364/OL.40.005626
  6. A bianisotropic metasurface with resonant asymmetric absorption
    Yazdi, M.; Albooyeh, M.; Alaee, R.; Asadchy, V.; Komjani, N.; Rockstuhl, C.; Simovski, C. R.; Tretyakov, S.
    2015. IEEE transactions on antennas and propagation, 63, 3004–3015. doi:10.1109/TAP.2015.2423855
  7. Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics
    Toscano, G.; Straubel, J.; Kwiatkowski, A.; Rockstuhl, C.; Evers, F.; Asger Mortensen, N.; Wubs, M.
    2015. Nature Communications, 6, 7132/1–11. doi:10.1038/ncomms8132
  8. Revisiting substrate-induced bianisotropy in metasurfaces
    Albooyeh, M.; Alaee, R.; Rockstuhl, C.; Simovski, C.
    2015. Physical review / B, 91, 195304/1–11. doi:10.1103/PhysRevB.91.195304
  9. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial
    Lewandowski, W.; Fruhnert, M.; Mieczkowski, J.; Rockstuhl, C.; Gorecka, E.
    2015. Nature Communications, 6, 6590/1–9. doi:10.1038/ncomms7590
  10. Synthesis, separation, and hypermethod characterization of gold nanoparticle dimers connected by a rigid rod linker
    Fruhnert, M.; Kretschmer, F.; Geiss, R.; Perevyazko, I.; Cialla-May, D.; Steinert, M.; Janunts, N.; Sivun, D.; Hoeppener, S.; Hager, M. D.; Pertsch, T.; Schubert, U. S.; Rockstuhl, C.
    2015. The journal of physical chemistry <Washington, DC> / C, 119 (31), 17809–17817. doi:10.1021/acs.jpcc.5b04346
  11. Dual and chiral objects for optical activity in general scattering directions
    Fernandez-Corbaton, I.; Fruhnert, M.; Rockstuhl, C.
    2015. ACS photonics, 2 (3), 376–384. doi:10.1021/ph500419a
  12. Scattering dark states in multiresonant concentric plasmonic nanorings
    Alaee, R.; Lehr, D.; Filter, R.; Lederer, F.; Kley, E. B.; Rockstuhl, C.; Tünnermann, A.
    2015. ACS photonics, 2, 1085–1090. doi:10.1021/acsphotonics.5b00133
  13. A generalized Kerker condition for highly directive nanoantennas
    Alaee, R.; Filter, R.; Lehr, D.; Lederer, F.; Rockstuhl, C.
    2015. Optics Letters, 40, 645–2648. doi:10.1364/OL.40.002645
  14. Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications
    Alaee, R.; Albooyeh, M.; Yazdi, M.; Komjani, N.; Simovski, C.; Lederer, F.; Rockstuhl, C.
    2015. Physical Review B, 91, 115119. doi:10.1103/PhysRevB.91.115119
  15. Enhancing resonances of optical nanoantennas by circular gratings
    Qi, J.; Kaiser, T.; Klein, A. E.; Steinert, M.; Pertsch, T.; Lederer, F.; Rockstuhl, C.
    2015. Optics express, 23 (11), 14583–14595. doi:10.1364/OE.23.014583
2014
Journal Articles
  1. Coupling of quantum emitters and metallic nanoantennae for the generation of nonclassical light at high rates
    Słowik, K.; Filter, R.; Straubel, J.; Lederer, F.; Rockstuhl, C.
    2014. Physica scripta, T160, Art.-Nr.: 014037. doi:10.1088/0031-8949/2014/T160/014037
  2. Survey of Plasmonic Nanoparticles : From Synthesis to Application
    Kretschmer, F.; Mühlig, S.; Hoeppener, S.; Winter, A.; Hager, M. D.; Rockstuhl, C.; Pertsch, T.; Schubert, U. S.
    2014. Particle & particle systems characterization, 31 (7), 721–744. doi:10.1002/ppsc.201300309
  3. Effective Optical Properties of Plasmonic Nanocomposites
    Etrich, C.; Fahr, S.; Hedayati, M. K.; Faupel, F.; Elbahri, M.; Rockstuhl, C.
    2014. Materials, 7 (2), 727–741. doi:10.3390/ma7020727
  4. The spectral shift between near- and far-field resonances of optical nano-antennas
    Menzel, C.; Hebestreit, E.; Mühlig, S.; Rockstuhl, C.; Burger, S.; Lederer, F.; Pertsch, T.
    2014. Optics Express, 22 (8), 9971–9982. doi:10.1364/OE.22.009971
  5. Nonlinear plasmonic antennas
    Hasan, S. B.; Lederer, F.; Rockstuhl, C.
    2014. Materials today, 17 (10), 478–485. doi:10.1016/j.mattod.2014.05.009
  6. Metamorphose VI - the Virtual Institute for artificial electromagnetic materials and metamaterials: origin, mission, and activities
    Bilotti, F.; Rockstuhl, C.; Schuchinsky, A.; Tretyakov, S.
    2014. EPJ Applied Metamaterials, 1, 1–5. doi:10.1051/epjam/2014002
  7. Towards negative index self-assembled metamaterials
    Fruhnert, M.; Mühlig, S.; Lederer, F.; Rockstuhl, C.
    2014. Physical review / B, 89, 0775408/1–6. doi:10.1103/PhysRevB.89.075408
  8. Plasmonic nanoparticle clusters with tunable plasmonic resonances in the visible spectral region
    Kretschmer, F.; Fruhnert, M.; Geiss, R.; Mansfeld, U.; Höppener, C.; Rockstuhl, C.; Pertsch, T.; Schubert, U. S.
    2014. Journal of materials chemistry / C, 31, 6415–6422. doi:10.1039/c4tc01018c
  9. Highly resonant and directional optical nanoantennas
    Qi, J.; Kaiser, T.; Peuker, R.; Pertsch, T.; Lederer, F.; Rockstuhl, C.
    2014. Journal of the Optical Society of America / A, 31, 388–393. doi:10.1364/JOSAA.31.000388
  10. Nanoantennas for ultrabright single photon sources
    Filter, R.; Slowik, K.; Straubel, J.; lederer, F.; Rockstuhl, C.
    2014. Optics letters, 39, 1246–1249. doi:10.1364/OL.39.001246
  11. Plasmonic nanoring fabrication tuned to pitch: efficient, deterministic, and large scale realization of ultra-small gaps for next generation plasmonic devices
    Lehr, D.; Alaee, R.; Filter, R.; Dietrich, K.; Siefke, T.; Rockstuhl, C.; Lederer, F.; Kley, E. B.; Tünnermann, A.
    2014. Applied physics letters, 105, 143110. doi:10.1063/1.4897497
  12. Nonlocal effects: relevance for the spontaneous emission rates of quantum emitters coupled to plasmonic structures
    Filter, R.; Bösel, C.; Toscano, G.; Lederer, F.; Rockstuhl, C.
    2014. Optics letters, 39, 6118–6121. doi:10.1364/OL.39.006118
  13. Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces
    Singh, R.; Al-Naib, I.; Chowdhury, D. R.; Cong, L.; Rockstuhl, C.; Zhang, W.
    2014. Applied physics letters, 105, 081108/1–5. doi:10.1063/1.4893726
  14. Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene
    Yu, R.; Alaee, R.; Lederer, F.; Rockstuhl, C.
    2014. Physical review / B, 90, Art.Nr.: 085409/1–6. doi:10.1103/PhysRevB.90.085409
  15. Effects of film growth modes on light trapping in silicon thin film solar cells
    Wiesendanger, S.; Bischoff, T.; Jovanov, V.; Knipp, D.; Burger, S.; Lederer, F.; Rockstuhl, C.
    2014. Applied physics letters, 104, 231103/1–5. doi:10.1063/1.4882997
  16. Stacked and tunable large-scale plasmonic nanoparticle arrays for surface-enhanced Raman spectroscopy
    Mühlig, S.; Cialla, D.; Cunningham, A.; März, A.; Weber, K.; Bürgi, T.; Lederer, F.; Rockstuhl, C.
    2014. The journal of physical chemistry <Washington, DC> / C, 118, 10230–10237. doi:10.1021/jp409688p
  17. Dissipation-driven entanglement between qubits mediated by plasmonic nanoantennas
    Hou, J.; Slowik, K.; Lederer, F.; Rockstuhl, C.
    2014. Physical review / B, 89, 235413/1–9. doi:10.1103/PhysRevB.89.235413
  18. Extreme coupling: A route towards local magnetic metamaterials
    Menzel, C.; Hebestreit, E.; Alaee, R.; Albooyeh, M.; Mühlig, S.; Burger, S.; Rockstuhl, C.; Simovski, C.; Tretyakov, S.; Lederer, F.; Pertsch, T.
    2014. Physical review / B, 89, 155125/1–8. doi:10.1103/PhysRevB.89.155125
  19. Bloch oscillations in plasmonic waveguide arrays
    Block, A.; Etrich, C.; Limboeck, T.; Bleckmann, F.; Soergel, E.; Rockstuhl, C.; Linden, S.
    2014. Nature Communications, 5, 3843. doi:10.1038/ncomms4843
2013
Book Chapters
  1. Phase anomalies in micro-optics
    Kim, M.-S.; Scharf, T.; Rockstuhl, C.; Herzig, H. P.
    2013. Progress in Optics, 115–197, Elsevier. doi:10.1016/B978-0-444-62644-8.00003-0
  2. Theory of Optical Metamaterials
    Rockstuhl, C.; Menzel, C.; Mühlig, S.; Lederer, F.
    2013. Encyclopedia of Nanotechnology. Ed.: Bharat Bhushan, 2667–2680, Springer-Verlag
  3. Multipole analysis of self-assembled metamaterials
    Mühlig, S.; Rockstuhl, C.
    2013. Amorphous Nanophotonics. Ed.: T. Scharf, 89–118, Springer-Verlag. doi:10.1007/978-3-642-32475-8_4
Books
  1. Amorphous Nanophotonics
    Rockstuhl, C.; Scharf, T.
    2013. Springer-Verlag
Journal Articles
  1. Phase anomalies in Talbot light carpets of selfimages
    Kim, M.-S.; Scharf, T.; Menzel, C.; Rockstuhl, C.; Herzig, H. P.
    2013. Optics Express, 21 (1), 1287–1300. doi:10.1364/OE.21.001287
  2. Tunable graphene antennas for selective enhancement of THz-emission
    Filter, R.; Farhat, M.; Steglich, M.; Alaee, R.; Rockstuhl, C.; Lederer, F.
    2013. Optics express, 21 (3), 3737–3745. doi:10.1364/OE.21.003737
  3. Propagation of electromagnetic fields in bulk terahertz metamaterials: A combined experimental and theoretical study
    Alaee, R.; Menzel, C.; Banas, A.; Banas, K.; Xu, S.; Chen, H.; Moser, H. O.; Lederer, F.; Rockstuhl, C.
    2013. Physical Review B - Condensed Matter and Materials Physics, 87 (7), 075110. doi:10.1103/PhysRevB.87.075110
  4. Longitudinal-differential phase distribution near the focus of a high numerical aperture lens: Study of wavefront spacing and Gouy phase
    Kim, M.-S.; Da Costa Assafrao, A.; Scharf, T.; Rockstuhl, C.; Pereira, S. F.; Urbach, H. P.; Herzig, H. P.
    2013. Journal of Modern Optics, 60 (3), 197–201. doi:10.1080/09500340.2013.765053
  5. A self-organized anisotropic liquid-crystal plasmonic metamaterial
    Dintinger, J.; Tang, B.-J.; Zeng, X.; Liu, F.; Kienzler, T.; Mehl, G. H.; Ungar, G.; Rockstuhl, C.; Scharf, T.
    2013. Advanced Materials, 25 (14), 1999–2004. doi:10.1002/adma.201203965
  6. Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells
    Wiesendanger, S.; Zilk, M.; Pertsch, T.; Rockstuhl, C.; Lederer, F.
    2013. Optics Express, 21 (SUPPL.3), A450-A459. doi:10.1364/OE.21.00A450
  7. A 3D tunable and multi-frequency graphene plasmonic cloak
    Farhat, M.; Rockstuhl, C.; Baci, H.
    2013. Optics express, 21 (10), 12592–12603. doi:10.1364/OE.21.012592
  8. Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies
    Jovanov, V.; Palanchoke, U.; Magnus, P.; Stiebig, H.; Hüpkes, J.; Sichanugrist, P.; Konagai, M.; Wiesendanger, S.; Rockstuhl, C.; Knipp, D.
    2013. Optics Express, 21 (13), A595-A606. doi:10.1364/OE.21.00A595
  9. Exploiting extreme coupling to realize a metamaterial perfect absorber
    Huebner, U.; Pshenay-Severin, E.; Alaee, R.; Menzel, C.; Ziegler, M.; Rockstuhl, C.; Lederer, F.; Pertsch, T.; Meyer, H.-G.; Popp, J.
    2013. Microelectronic Engineering, 111, 110–113. doi:10.1016/j.mee.2013.02.028
  10. Impedance generalization for plasmonic waveguides beyond the lumped circuit model
    Kaiser, T.; Hasan, S. B.; Paul, T.; Pertsch, T.; Rockstuhl, C.
    2013. Physical Review B - Condensed Matter and Materials Physics, 88 (3), 035117. doi:10.1103/PhysRevB.88.035117
  11. A self-assembled three-dimensional cloak in the visible
    Mühlig, S.; Cunningham, A.; Dintinger, J.; Farhat, M.; Hasan, S. B.; Scharf, T.; Bürgi, T.; Lederer, F.; Rockstuhl, C.
    2013. Scientific Reports, 3, 2328. doi:10.1038/srep02328
  12. Deep-subwavelength plasmonic nanoresonators exploiting extreme coupling
    Alaee, R.; Menzel, C.; Huebner, U.; Pshenay-Severin, E.; Bin Hasan, S.; Pertsch, T.; Rockstuhl, C.; Lederer, F.
    2013. Nano Letters, 13 (8), 3482–3486. doi:10.1021/nl4007694
  13. Negative refractive index materials for improved solar cells
    Fahr, S.; Rockstuhl, C.; Lederer, F.
    2013. Physical Review B - Condensed Matter and Materials Physics, 88 (11), 115403. doi:10.1103/PhysRevB.88.115403
  14. Experimental and theoretical study of the Gouy phase anomaly of light in the focus of microlenses
    Kim, M.-S.; Naqavi, A.; Scharf, T.; Weible, K. J.; Völkel, R.; Rockstuhl, C.; Herzig, H. P.
    2013. Journal of Optics, 15 (10), 105708. doi:10.1088/2040-8978/15/10/105708
  15. A path to implement optimized randomly textured surfaces for solar cells
    Wiesendanger, S.; Zilk, M.; Pertsch, T.; Lederer, F.; Rockstuhl, C.
    2013. Applied Physics Letters, 103 (13), 131115. doi:10.1063/1.4823554
  16. Plasmon coupling in self-assembled gold nanoparticle-based honeycomb islands
    Scheeler, S. P.; Mühlig, S.; Rockstuhl, C.; Hasan, S. B.; Ullrich, S.; Neubrech, F.; Kudera, S.; Pacholski, C.
    2013. Journal of Physical Chemistry C, 117 (36), 18634–18641. doi:10.1021/jp405560t
  17. Distinguishing chemical and electromagnetic enhancement in surface-enhanced Raman spectra: The case of para-nitrothiophenol
    Thomas, M.; Mühlig, S.; Deckert-Gaudig, T.; Rockstuhl, C.; Deckert, V.; Marquetand, P.
    2013. Journal of Raman Spectroscopy, 44 (11), 1497–1505. doi:10.1002/jrs.4377
  18. Strong coupling of optical nanoantennas and atomic systems
    Slowik, K.; Filter, R.; Straubel, J.; Lederer, F.; Rockstuhl, C.
    2013. Physical Review B - Condensed Matter and Materials Physics, 88 (19), 195414. doi:10.1103/PhysRevB.88.195414
  19. Optical metamaterials with quasicrystalline symmetry: Symmetry-induced optical isotropy
    Kruk, S. S.; Helgert, C.; Decker, M.; Staude, I.; Menzel, C.; Etrich, C.; Rockstuhl, C.; Jagadish, C.; Pertsch, T.; Neshev, D. N.; Kivshar, Y. S.
    2013. Physical Review B - Condensed Matter and Materials Physics, 88 (20), 201404. doi:10.1103/PhysRevB.88.201404
  20. Enhancing the nonlinear response of plasmonic nanowire antennas by engineering their terminations
    Hasan, S. B.; Etrich, C.; Filter, R.; Rockstuhl, C.; Lederer, F.
    2013. Physical Review B - Condensed Matter and Materials Physics, 88 (20), 205125. doi:10.1103/PhysRevB.88.205125
  21. The fano resonance in symmetry broken terahertz metamaterials
    Singh, R.; Al-Naib, I.; Cao, W.; Rockstuhl, C.; Koch, M.; Zhang, W.
    2013. IEEE Transactions on Terahertz Science and Technology, 3 (6), 820–826. doi:10.1109/TTHZ.2013.2285498
  22. Self-assembled plasmonic metamaterials
    Mühlig, S.; Cunningham, A.; Dintinger, J.; Scharf, T.; Bürgi, T.; Lederer, F.; Rockstuhl, C.
    2013. Nanophotonics, 2 (3), 211–240. doi:10.1515/nanoph-2012-0036